MustSeq, an alternative approach for multiplexible strand-specific 3’ end sequencing of mRNA transcriptome confers high efficiency and practicality

RNA Biology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Liyao Mai ◽  
Yinbin Qiu ◽  
Zhiwei Lian ◽  
Caiming Chen ◽  
Linlin Wang ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 754
Author(s):  
Giulia Gaggi ◽  
Andrea Di Credico ◽  
Pascal Izzicupo ◽  
Giovanni Iannetti ◽  
Angela Di Baldassarre ◽  
...  

Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 802
Author(s):  
Chang Sun ◽  
Yingxin Mu ◽  
Yuxin Wang

Electrochemical ammonia synthesis, which is an alternative approach to the Haber–Bosch process, has attracted the attention of researchers because of its advantages including mild working conditions, environmental protection, and simple process. However, the biggest problem in this field is the lack of high-performance catalysts. Here, we report high-efficiency electroreduction of N2 to NH3 on γ-MnO2-supported Pd nanoparticles (Pd/γ-MnO2) under ambient conditions, which exhibits excellent catalytic activity with an NH3 yield rate of 19.72 μg·mg−1Pd h−1 and a Faradaic efficiency of 8.4% at −0.05 V vs. the reversible hydrogen electrode (RHE). X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization shows that Pd nanoparticles are homogeneously dispersed on the γ-MnO2. Pd/γ-MnO2 outperforms other catalysts including Pd/C and γ-MnO2 because of its synergistic catalytic effect between Pd and Mn.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7890
Author(s):  
Souheil Fenghour ◽  
Daqing Chen ◽  
Kun Guo ◽  
Bo Li ◽  
Perry Xiao

As an alternative approach, viseme-based lipreading systems have demonstrated promising performance results in decoding videos of people uttering entire sentences. However, the overall performance of such systems has been significantly affected by the efficiency of the conversion of visemes to words during the lipreading process. As shown in the literature, the issue has become a bottleneck of such systems where the system’s performance can decrease dramatically from a high classification accuracy of visemes (e.g., over 90%) to a comparatively very low classification accuracy of words (e.g., only just over 60%). The underlying cause of this phenomenon is that roughly half of the words in the English language are homophemes, i.e., a set of visemes can map to multiple words, e.g., “time” and “some”. In this paper, aiming to tackle this issue, a deep learning network model with an Attention based Gated Recurrent Unit is proposed for efficient viseme-to-word conversion and compared against three other approaches. The proposed approach features strong robustness, high efficiency, and short execution time. The approach has been verified with analysis and practical experiments of predicting sentences from benchmark LRS2 and LRS3 datasets. The main contributions of the paper are as follows: (1) A model is developed, which is effective in converting visemes to words, discriminating between homopheme words, and is robust to incorrectly classified visemes; (2) the model proposed uses a few parameters and, therefore, little overhead and time are required to train and execute; and (3) an improved performance in predicting spoken sentences from the LRS2 dataset with an attained word accuracy rate of 79.6%—an improvement of 15.0% compared with the state-of-the-art approaches.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1905
Author(s):  
Faryal Fatima ◽  
Hongbo Du ◽  
Raghava R. Kommalapati

Poultry slaughterhouses produce a large amount of wastewater, which is usually treated by conventional methods. The traditional techniques face some challenges, especially the incapability of recovering valuable nutrients and reusing the treated water. Therefore, membrane technology has been widely adopted by researchers due to its enormous advantages over conventional methods. Pressure-driven membranes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), have been studied to purify poultry slaughterhouse wastewater (PSWW) as a standalone process or an integrated process with other procedures. Membrane technology showed excellent performance by providing high efficiency for pollutant removal and the recovery of water and valuable products. It may remove approximately all the pollutants from PSWW and purify the water to the required level for discharge to the environment and even reuse for industrial poultry processing purposes while being economically efficient. This article comprehensively reviews the treatment and reuse of PSWW with MF, UF, NF, and RO. Most valuable nutrients can be recovered by UF, and high-quality water for reuse in poultry processing can be produced by RO from PSWW. The incredible performance of membrane technology indicates that membrane technology is an alternative approach for treating PSWW.


Synthesis ◽  
2018 ◽  
Vol 51 (06) ◽  
pp. 1365-1376 ◽  
Author(s):  
Teng Liu ◽  
Feixiang Cheng ◽  
Jianjun Liu ◽  
Xianfu Shen ◽  
Jianbin Xu ◽  
...  

An alternative approach with eco-friendliness and high efficiency for the preparation of unsymmetrical diaryl sulfones has been developed. The strategy takes advantage of the reaction of sulfonyl hydrazides with quinone imine ketals catalyzed by DABCO (triethylenediamine) in ethanol. This transformation proceeds via a Lewis base promoted, direct 1,4-conjugate addition/sulfonylation/alcohol elimination reaction sequence. The protocol provides an efficient approach to access an array of diverse unsymmetrical diaryl and heterodiaryl sulfones, aryl alkyl sulfones and aryl vinyl sulfones in good to excellent yields.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 229 ◽  
Author(s):  
Jan Bogacki ◽  
Piotr Marcinowski ◽  
Maciej Majewski ◽  
Jarosław Zawadzki ◽  
Sridhar Sivakumar

Fossil fuel combustion is a serious environmental problem. Significant quantities of flue gasses and wastewater, requiring further treatment, are produced. This article compares three wet flue gas desulfurization (FGD) wastewater treatment methods: coagulation with precipitation using iron(III) ions—recommended by the European Union as the best available technique (BAT)—and two alternative advanced oxidation processes (Fe2+/H2O2 and Fe0/H2O2). Both oxidation processes that were used met the technical FGD wastewater treatment requirements of the BAT. The best treatment effects, expressed as pollutants’ removal, were obtained for the Fe2+/H2O2 process for 150/300 mg/L reagent doses. It allows effective removal of boron up to 212 mg/L and heavy metals up to below the detection limit <0.010 mg/L for Pb and <0.005 mg/L for Cu. Therefore, the Fe2+/H2O2 process could be an option for FGD wastewater treatment as an alternative to the BAT recommended iron(III)-based coagulation with precipitation. Additionally, an analysis of variance was applied to check the significance of the two independent variables and their interactions. Statistical analysis confirmed high efficiency and applicability of treatment process.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Leopoldo Pacheco Bastos ◽  
Gustavo da Silva Vieira de Melo ◽  
Newton Sure Soeiro

Noise control devices such as panels and barriers, when of high efficiency, generally are of difficult acquisition due to high costs turning in many cases their use impracticable, mainly for limited budget small-sized companies. There is a huge requirement for new acoustic materials that have satisfactory performance, not only under acoustic aspect but also other relevant ones and are of low cost. Vegetable fibers are an alternative solution when used as panels since they promise satisfactory acoustic absorption, according to previous researches, exist in abundance, and derive from renewable sources. This paper, therefore, reports on the development of panels made from vegetable fibers (coconut, palm, sisal, and açaí), assesses their applicability by various experimental (flammability, odor, fungal growth, and ageing) tests, and characterize them acoustically in terms of their sound absorption coefficients on a scale model reverberant chamber. Acoustic results point out that the aforementioned fiber panels play pretty well the role of a noise control device since they have compatible, and in some cases, higher performance when compared to commercially available conventional materials.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Xiaoping Du

A good balance between accuracy and efficiency is essential for reliability-based design (RBD). For this reason, sequential-loops formulations combined with the first-order reliability method (FORM) are usually used. FORM requires a nonlinear non-normal-to-normal transformation, which may increase the nonlinearity of a probabilistic constraint function significantly. The increased nonlinearity may lead to an increased error in reliability estimation. In order to improve accuracy and maintain high efficiency, the proposed method uses the accurate saddlepoint approximation for reliability analysis. The overall RBD is conducted in a sequence of cycles of deterministic optimization and reliability analysis. The reliability analysis is performed in the original random space without any nonlinear transformation. As a result, the proposed method provides an alternative approach to RBD with higher accuracy when the non-normal-to-normal transformation increases the nonlinearity of probabilistic constraint functions.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Sign in / Sign up

Export Citation Format

Share Document