1965 ◽  
Vol 55 (3) ◽  
pp. P53-P58
2020 ◽  
Israa Bu Najmah ◽  
Nicholas Lundquist ◽  
Melissa K. Stanfield ◽  
Filip Stojcevski ◽  
Jonathan A. Campbell ◽  

An insulating composite was made from the sustainable building blocks wool, sulfur, and canola oil. In the first stage of the synthesis, inverse vulcanization was used to make a polysulfide polymer from the canola oil triglyceride and sulfur. This polymerization benefits from complete atom economy. In the second stage, the powdered polymer is mixed with wool, coating the fibers through electrostatic attraction. The polymer and wool mixture is then compressed with mild heating to provoke S-S metathesis in the polymer, which locks the wool in the polymer matrix. The wool fibers impart tensile strength, insulating properties, and flame resistance to the composite. All building blocks are sustainable or derived from waste and the composite is a promising lead on next-generation insulation for energy conservation.

Wenxin Wei ◽  
Guifeng Ma ◽  
Hongtao Wang ◽  
Jun Li

Objective: A new poly(ionic liquid)(PIL), poly(p-vinylbenzyltriphenylphosphine hexafluorophosphate) (P[VBTPP][PF6]), was synthesized by quaternization, anion exchange reaction, and free radical polymerization. Then a series of the PIL were synthesized at different conditions. Methods: The specific heat capacity, glass-transition temperature and melting temperature of the synthesized PILs were measured by differential scanning calorimeter. The thermal conductivities of the PILs were measured by the laser flash analysis method. Results: Results showed that, under optimized synthesis conditions, P[VBTPP][PF6] as the thermal insulator had a high glass-transition temperature of 210.1°C, high melting point of 421.6°C, and a low thermal conductivity of 0.0920 W m-1 K-1 at 40.0°C (it was 0.105 W m-1 K-1 even at 180.0°C). The foamed sample exhibited much low thermal conductivity λ=0.0340 W m-1 K-1 at room temperature, which was comparable to a commercial polyurethane thermal insulating material although the latter had a much lower density. Conclusion: In addition, mixing the P[VBTPP][PF6] sample into polypropylene could obviously increase the Oxygen Index, revealing its efficient flame resistance. Therefore, P[VBTPP][PF6] is a potential thermal insulating material.

2021 ◽  
Vol 264 ◽  
pp. 118058
Dechao Hu ◽  
Huaqing Liu ◽  
Yong Ding ◽  
Wenshi Ma

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1701
R. A. Ilyas ◽  
S. M. Sapuan ◽  
M. R. M. Asyraf ◽  
D. A. Z. N. Dayana ◽  
J. J. N. Amelia ◽  

Polymer composites filled with metal derivatives have been widely used in recent years, particularly as flame retardants, due to their superior characteristics, including high thermal behavior, low environmental degradation, and good fire resistance. The hybridization of metal and polymer composites produces various favorable properties, making them ideal materials for various advanced applications. The fire resistance performance of polymer composites can be enhanced by increasing the combustion capability of composite materials through the inclusion of metallic fireproof materials to protect the composites. The final properties of the metal-filled thermoplastic composites depend on several factors, including pore shape and distribution and morphology of metal particles. For example, fire safety equipment uses polyester thermoplastic and antimony sources with halogenated additives. The use of metals as additives in composites has captured the attention of researchers worldwide due to safety concern in consideration of people’s life and public properties. This review establishes the state-of-art flame resistance properties of metals/polymer composites for numerous industrial applications.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2400
Leandra P. Santos ◽  
Douglas S. da Silva ◽  
Thais H. Morari ◽  
Fernando Galembeck

Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.

2021 ◽  
Vol 412 ◽  
pp. 128647
Jingjing Meng ◽  
Pengfei Chen ◽  
Rui Yang ◽  
Linli Dai ◽  
Cheng Yao ◽  

2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.

2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.

Sign in / Sign up

Export Citation Format

Share Document