scholarly journals Tubular structures in S49 mouse lymphoma are regulated through in vivo host-cell interaction and in vitro interferon treatment.

1985 ◽  
Vol 100 (5) ◽  
pp. 1351-1356 ◽  
Author(s):  
J Hochman ◽  
N Mador ◽  
A Panet

Malignant S49 mouse lymphoma cells that grow in suspension culture demonstrate in their cytoplasm characteristic tubular structures. These structures also appear in immunogenic, substrate-adherent variants of S49 cells that grow in culture. Upon transfer of both cell types into nude mice, the tubular structures of the adherent variants (and not the suspension-growing cells) undergo a profound alteration whereby their tubular components disappear and clusters of viruslike particles appear. These very closely resemble, on morphological grounds, precursors of B-type retroviruses. This specific in vivo interaction between the host and the S49 variant can be mimicked in culture by treatment of these cells for 24 h with 500 U/ml of mouse interferon. The suspension-growing S49 cells are unresponsive to interferon in this respect. Immunohistochemical analysis reveals that both tubular structures and the viruslike particles represent stages in the morphogenesis of mouse mammary tumor virus. A working hypothesis is advanced relating the regulation of the tubular system to the impaired tumorigenic potential of adherent S49 cells in syngeneic Balb/c hosts.

2002 ◽  
Vol 68 (11) ◽  
pp. 5718-5727 ◽  
Author(s):  
Li-Wei Lee ◽  
Ching-Hsun Chiou ◽  
John E. Linz

ABSTRACT The activities of two enzymes, a 168-kDa protein and a 40-kDa protein, OmtA, purified from the filamentous fungus Aspergillus parasiticus were reported to convert the aflatoxin pathway intermediate sterigmatocystin to O-methylsterigmatocystin in vitro. Our initial goal was to determine if OmtA is necessary and sufficient to catalyze this reaction in vivo and if this reaction is necessary for aflatoxin synthesis. We generated A. parasiticus omtA-null mutant LW1432 and a maltose binding protein-OmtA fusion protein expressed in Escherichia coli. Enzyme activity analysis of OmtA fusion protein in vitro confirmed the reported catalytic function of OmtA. Feeding studies conducted with LW1432 demonstrated a critical role for OmtA, and the reaction catalyzed by this enzyme in aflatoxin synthesis in vivo. Because of a close regulatory link between aflatoxin synthesis and asexual sporulation (conidiation), we hypothesized a spatial and temporal association between OmtA expression and conidiospore development. We developed a novel time-dependent colony fractionation protocol to analyze the accumulation and distribution of OmtA in fungal colonies grown on a solid medium that supports both toxin synthesis and conidiation. OmtA-specific polyclonal antibodies were purified by affinity chromatography using an LW1432 protein extract. OmtA was not detected in 24-h-old colonies but was detected in 48-h-old colonies using Western blot analysis; the protein accumulated in all fractions of a 72-h-old colony, including cells (0 to 24 h) in which little conidiophore development was observed. OmtA in older fractions of the colony (24 to 72 h) was partly degraded. Fluorescence-based immunohistochemical analysis conducted on thin sections of paraffin-embedded fungal cells from time-fractionated fungal colonies demonstrated that OmtA is evenly distributed among different cell types and is not concentrated in conidiophores. These data suggest that OmtA is present in newly formed fungal tissue and then is proteolytically cleaved as cells in that section of the colony age.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 565
Author(s):  
Qasem Ramadan ◽  
Sajay Bhuvanendran Nair Gourikutty ◽  
Qingxin Zhang

Improved in vitro models of human organs for predicting drug efficacy, interactions, and disease modelling are crucially needed to minimize the use of animal models, which inevitably display significant differences from the human disease state and metabolism. Inside the body, cells are organized either in direct contact or in close proximity to other cell types in a tightly controlled architecture that regulates tissue function. To emulate this cellular interface in vitro, an advanced cell culture system is required. In this paper, we describe a set of compartmentalized silicon-based microfluidic chips that enable co-culturing several types of cells in close proximity with enhanced cell–cell interaction. In vivo-like fluid flow into and/or from each compartment, as well as between adjacent compartments, is maintained by micro-engineered porous barriers. This porous structure provides a tool for mimicking the paracrine exchange between cells in the human body. As a demonstrating example, the microfluidic system was tested by culturing human adipose tissue that is infiltrated with immune cells to study the role if the interplay between the two cells in the context of type 2 diabetes. However, the system provides a platform technology for mimicking the structure and function of single- and multi-organ models, which could significantly narrow the gap between in vivo and in vitro conditions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 826-826 ◽  
Author(s):  
Kylie D. Mason ◽  
Cassandra J. Vandenberg ◽  
Mark F. van Delft ◽  
Andrew H. Wei ◽  
Suzanne Cory ◽  
...  

Abstract Lymphoid tumors often respond poorly to conventional cytotoxics, a common cause being their impaired sensitivity to apoptosis, such as that caused by Bcl-2 overexpression. A strategy to overcoming this is to use mimics of the natural antagonists of pro-survival Bcl-2, the BH3 only proteins. A promising BH3 mimetic is ABT-737, which targets Bcl-2 and closely related pro-survival proteins. We evaluated its potential utility by testing it on cell lines, clinical samples and on a relevant mouse lymphoma model. We assessed the sensitivity of B cell lymphoma cell lines and primary CLL samples to ABT-737, either alone or in combination. To ascertain its efficacy in vivo, we utilized a mouse model based on the Eμ-myc tumor that is readily transplantable and amenable to genetic manipulation. When syngeneic recipient mice were inoculated with tumors, they develop widespread lymphoma, fatal unless treated by agents such as cyclophosphamide. We found that ABT-737, on its own, was cytotoxic only to a subset of cell lines and primary CLL samples. However, it can synergize potently with agents such as dexamethasone, suggesting that this agent might be useful in combination with currently used chemotherapeutics. In the Eμ myc mouse lymphoma model, treatment with ABT-737 alone did not control the disease as multiple independently derived tumors proved refractory to treatment with this agent. However, ABT-737 was partially effective as a single agent for treating bitransgenic tumors derived from crosses of the Eμmyc and Eμ-bcl-2 transgenic mice. ABT-737 therapy prolonged the survival of recipient mice transplanted with tumors from 30 to 60 days. When combined with a low dose of cyclophosphamide (50mg/kg), long term stable remissions were achieved, which were sustained even longer than control mice treated with much higher doses of cyclophosphamide (300mg/kg). We found that ABT-737 was well tolerated as a single agent and when combined with low doses of cytotoxics such as cyclophosphamide. Thus, ABT-737 may prove to be efficacious for those tumors highly dependent on Bcl-2 for their survival. We found that despite its high affinity for Bcl-2, Bcl-xL and Bcl-w, many cell types proved refractory to ABT-737 as a single agent. We show that this resistance reflects its inability to target another pro-survival relative Mcl-1. Down-regulation of Mcl-1 by several strategies conferred sensitivity to ABT-737. Furthermore, enforced Mcl-1 expression in the Eμmyc/bcl-2 bitransgenic mouse lymphoma model conferred marked resistance as mice transplanted with such tumors died as rapidly as the untreated counterparts. However, enhanced Bcl-2 overexpression on these tumors had little impact on the in vivo response, suggesting that ABT-737 can be utilized even when Bcl-2 is markedly overexpressed. ABT-737 appears to be a promising agent for the clinic. It potently sensitizes certain lymphoid tumors to conventional cytotxics in vitro. The synergy observed between dexamethasone and ABT-737 on some lymphoid lines in culture suggests that it is attractive for clinical testing. Encouragingly, ABT-737 appeared efficacious in vivo against Bcl-2 overexpressing tumors when combined with a reduced dose of cyclophosphamide, suggesting that it will be useful for treating even those Bcl-2-overexpressing tumors that are normally highly chemoresistant.


2017 ◽  
Vol 398 (8) ◽  
pp. 839-855 ◽  
Author(s):  
Benedetta Assetta ◽  
Walter J. Atwood

Abstract JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2020 ◽  
Vol 27 (12) ◽  
pp. 699-710
Author(s):  
Irasema Mendieta ◽  
Gabriel Rodríguez-Gómez ◽  
Bertha Rueda-Zarazúa ◽  
Julia Rodríguez-Castelán ◽  
Winniberg Álvarez-León ◽  
...  

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


Sign in / Sign up

Export Citation Format

Share Document