scholarly journals Role of fascin in filopodial protrusion

2006 ◽  
Vol 174 (6) ◽  
pp. 863-875 ◽  
Author(s):  
Danijela Vignjevic ◽  
Shin-ichiro Kojima ◽  
Yvonne Aratyn ◽  
Oana Danciu ◽  
Tatyana Svitkina ◽  
...  

In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.

1998 ◽  
Vol 143 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Lewis G. Tilney ◽  
Patricia S. Connelly ◽  
Kelly A. Vranich ◽  
Michael K. Shaw ◽  
Gregory M. Guild

In developing Drosophila bristles two species of cross-linker, the forked proteins and fascin, connect adjacent actin filaments into bundles. Bundles form in three phases: (a) tiny bundles appear; (b) these bundles aggregate into larger bundles; and (c) the filaments become maximally cross-linked by fascin. In mutants that completely lack forked, aggregation of the bundles does not occur so that the mature bundles consist of <50 filaments versus ∼700 for wild type. If the forked concentration is genetically reduced to half the wild type, aggregation of the tiny bundles occurs but the filaments are poorly ordered albeit with small patches of fascin cross-linked filaments. In mutants containing an excess of forked, all the bundles tend to aggregate and the filaments are maximally crossbridged by fascin. Alternatively, if fascin is absent, phases 1 and 2 occur normally but the resultant bundles are twisted and the filaments within them are poorly ordered. By extracting fully elongated bristles with potassium iodide which removes fascin but leaves forked, the bundles change from being straight to twisted and the filaments within them become poorly ordered. From these observations we conclude that (a) forked is used early in development to aggregate the tiny bundles into larger bundles; and (b) forked facilitates fascin entry into the bundles to maximally cross-link the actin filaments into straight, compact, rigid bundles. Thus, forked aligns the filaments and then directs fascin binding so that inappropriate cross-linking does not occur.


2007 ◽  
Vol 18 (10) ◽  
pp. 3928-3940 ◽  
Author(s):  
Yvonne S. Aratyn ◽  
Thomas E. Schaus ◽  
Edwin W. Taylor ◽  
Gary G. Borisy

Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 s−1 and that it undergoes diffusion at moderate rates with a coefficient of 6 μm2s−1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reaction–diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25–60 actin monomers.


1997 ◽  
Vol 200 (24) ◽  
pp. 3213-3220 ◽  
Author(s):  
E Wallraff ◽  
H G Wallraff

Three mutant strains of Dictyostelium discoideum, lacking different actin-binding proteins, were tested for behavioural deficits in the multicellular pseudoplasmodium (slug) stage. Two strains, defective in the production of either -actinin (an actin cross-linker) or severin (an actin capping and severing protein), did not show changes in slug behaviour. Slugs of the mutant lacking another actin cross-linker, the 120 kDa gelation factor (ABP-120), however, migrated shorter distances in darkness as well as in horizontally directed light. More remarkably, they migrated at an angle of approximately 45 degrees to the left or right of the incident light, whereas wild-type slugs migrated on fairly straight paths towards the light. We discuss the hypothesis that this bidirectional oblique-angle phototaxis is due to changes in the optical properties of the pseudoplasmodia. Normally, in wild-type slugs, a lens effect causes stronger stimulation on the side distal to the incident light. We propose that in the mutant the lens quality is reduced, so that at small angles between the slug axis and the rays of light the proximal side is stimulated more intensely. As a result, the intended symmetrical stimulation is achieved at a certain angle to the left or right of the incident light. We assume that the absence of ABP-120 alters the shape of the lens and/or enhances internal light scattering via degradation of intercellular coherence; however, intracellular attenuation of light remains an additional or alternative possibility.


1996 ◽  
Vol 135 (1) ◽  
pp. 153-167 ◽  
Author(s):  
J Peränen ◽  
P Auvinen ◽  
H Virta ◽  
R Wepf ◽  
K Simons

Rab8 is a small Ras-like GTPase that regulates polarized membrane transport to the basolateral membrane in epithelial cells and to the dendrites in neurons. It has recently been demonstrated that fibroblasts sort newly synthesized proteins into two different pathways for delivery to the cell surface that are equivalent to the apical and the basolateral post-Golgi routes in epithelial cells (Yoshimori, T., P. Keller, M.G. Roth, and K. Simons. 1996. J. Cell Biol. 133:247-256). To determine the role of Rab8 in fibroblasts, we used both transient expression systems and stable cell lines expressing mutant or wild-type (wt) Rab8. A dramatic change in cell morphology occurred in BHK cells expressing both the wt Rab8 and the activated form of the GTPase, the Rab8Q67L mutant. These cells formed processes as a result of a reorganization of both their actin filaments and microtubules. Newly synthesized vesicular stomatitis virus G glycoprotein, a basolateral marker protein in MDCK cells, was preferentially delivered into these cell outgrowths. Based on these findings, we propose that Rab8 provides a link between the machinery responsible for the formation of cell protrusions and polarized biosynthetic membrane traffic.


2012 ◽  
Vol 23 (18) ◽  
pp. 3522-3531 ◽  
Author(s):  
Dimitra Athanasiou ◽  
Maria Kosmaoglou ◽  
Naheed Kanuga ◽  
Sergey S. Novoselov ◽  
Adrienne W. Paton ◽  
...  

Mutations in rod opsin—the light-sensitive protein of rod cells—cause retinitis pigmentosa. Many rod opsin mutations lead to protein misfolding, and therefore it is important to understand the role of molecular chaperones in rod opsin biogenesis. We show that BiP (HSPA5) prevents the aggregation of rod opsin. Cleavage of BiP with the subtilase cytotoxin SubAB results in endoplasmic reticulum (ER) retention and ubiquitylation of wild-type (WT) rod opsin (WT–green fluorescent protein [GFP]) at the ER. Fluorescence recovery after photobleaching reveals that WT-GFP is usually mobile in the ER. By contrast, depletion of BiP activity by treatment with SubAB or coexpression of a BiP ATPase mutant, BiP(T37G), decreases WT-GFP mobility to below that of the misfolding P23H mutant of rod opsin (P23H-GFP), which is retained in the ER and can form cytoplasmic ubiquitylated inclusions. SubAB treatment of P23H-GFP–expressing cells decreases the mobility of the mutant protein further and leads to ubiquitylation throughout the ER. Of interest, BiP overexpression increases the mobility of P23H-GFP, suggesting that it can reduce mutant rod opsin aggregation. Therefore inhibition of BiP function results in aggregation of rod opsin in the ER, which suggests that BiP is important for maintaining the solubility of rod opsin in the ER.


2000 ◽  
Vol 148 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Lewis G. Tilney ◽  
Patricia S. Connelly ◽  
Kelly A. Vranich ◽  
Michael K. Shaw ◽  
Gregory M. Guild

Previous studies demonstrate that in developing Drosophila bristles, two cross-linking proteins are required sequentially to bundle the actin filaments that support elongating bristle cells. The forked protein initiates the process and facilitates subsequent cross-linking by fascin. Using cross-linker–specific antibodies, mutants, and drugs we show that fascin and actin are present in excessive amounts throughout bundle elongation. In contrast, the forked cross-linker is limited throughout bundle formation, and accordingly, regulates bundle size and shape. We also show that regulation of cross-linking by phosphorylation can affect bundle size. Specifically, inhibition of phosphorylation by staurosporine results in a failure to form large bundles if added during bundle formation, and leads to a loss of cross-linking by fascin if added after the bundles form. Interestingly, inhibition of dephosphorylation by okadaic acid results in the separation of the actin bundles from the plasma membrane. We further show by thin section electron microscopy analysis of mutant and wild-type bristles that the amount of material that connects the actin bundles to the plasma membrane is also limited throughout bristle elongation. Therefore, overall bundle shape is determined by the number of actin filaments assembled onto the limited area provided by the connector material. We conclude that assembly of actin bundles in Drosophila bristles is controlled in part by the controlled availability of a single cross-linking protein, forked, and in part by controlled phosphorylation of cross-links and membrane actin connector proteins.


2004 ◽  
Vol 15 (2) ◽  
pp. 588-599 ◽  
Author(s):  
Pamela D. Arora ◽  
Michael Glogauer ◽  
Andras Kapus ◽  
David J. Kwiatkowski ◽  
Christopher A. McCulloch

The role of gelsolin, a calcium-dependent actin-severing protein, in mediating collagen phagocytosis, is not defined. We examined α2β1 integrin-mediated phagocytosis in fibroblasts from wild-type (WT) and gelsolin knockout (Gsn-) mice. After initial contact with collagen beads, collagen binding and internalization were 60% lower in Gsn- than WT cells. This deficiency was restored by transfection with gelsolin or with β1 integrin-activating antibodies. WT cells showed robust rac activation and increased [Ca2+]i during early contact with collagen beads, but Gsn- cells showed very limited responses. Transfected gelsolin in Gsn- cells restored rac activation after collagen binding. Transfection of Gsn- cells with active rac increased collagen binding to WT levels. Chelation of intracellular calcium inhibited collagen binding and rac activation, whereas calcium ionophore induced rac activation in WT and Gsn- cells. We conclude that the ability of gelsolin to remodel actin filaments is important for collagen-induced calcium entry; calcium in turn is required for rac activation, which subsequently enhances collagen binding to unoccupied α2β1 integrins.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2468-2468 ◽  
Author(s):  
Marlie H Fisher ◽  
Leila J. Noetzli ◽  
Michael Callaghan ◽  
Walter H. Kahr ◽  
Jesse W Rowley ◽  
...  

Emerging data indicate that germline mutations in transcription factors involved in hematopoiesis can lead to a cascade of downstream molecular alterations that modify the function of megakaryocytes (MK) and platelets. Our group and others have found that mutations in ETV6 lead to mild thrombocytopenia with a bleeding diathesis, red cell macrocytosis, and predisposition to lymphoblastic leukemia. The mechanisms responsible for thrombocytopenia and propensity for bleeding in patients with ETV6 mutations are unknown. We described families with missense mutations in the central domain (p.Pro214Leu) and the ETS DNA binding domain (p.Arg418Gly) of ETV6 that result in aberrant cellular localization of ETV6, decreased transcriptional repression, and impaired MK maturation. Deep sequencing of the platelet transcriptome revealed significant differences in mRNA expression levels between patients with the ETV6 p.Pro214Leu mutation and non-affected family members, indicating that ETV6 is critically involved in defining the molecular phenotype and function of platelets. We hypothesize that normal regulation and function of ETV6 is essential for the transcriptional machinery that controls megakaryocyte differentiation and formation of platelets that function normally under homeostatic conditions. We have successfully generated a CRISPR-Cas9 model to edit the genome of ETV6-expressing iPSC derived megakaryocyte cell line (imMKCL) to characterize the role of wild-type ETV6 in megakaryocyte development and elucidate the molecular mechanism driving mutant ETV6 mislocalization, transcriptional dysregulation, and subsequent dysmegakaryopoiesis and thrombocytopenia. In this imMKCL model, we have genetically engineered the cells to express wild-type, P214L, and the DNA binding domain mutations R418G and R369Q ETV6 fused to HALOtag, a reporter protein that can react with ligands carrying a variety of functionalities, including fluorescent labels, affinity handles, and attachment to solid phase, making this novel reporter conducive to immunofluorescence imaging, biochemical pulldown, and ChIPSeq. This system allows us to express wild type and mutant forms of ETV6 in appropriate allele ratios in imMKCL cells and various hematopoietic-relevant cell lines. Using this approach, we detected nuclear localization of wild-type ETV6 and altered cytoplasmic localization of both P214L and R418G ETV6 mutants. We have also demonstrated dimerization between both wild-type and mutant ETV6 in this cell model. Importantly, we have used HALOtag protein immunoprecipitation to demonstrate ETV6 binding to FLI1, another ETS family member and key transcriptional regulator of megakaryocyte development, suggesting that ETV6 and FLI1 cooperate to regulate megakaryopoiesis under homeostatic conditions. Altogether, these data suggest that mutant ETV6 functions as a dominant negative, sequestering wild type ETV6 in the cytoplasm, de-regulating key transcriptional targets for homeostatic megakaryocyte development. Ongoing studies will define the full repertoire of protein interactions and transcriptional targets of wild-type and mutant ETV6. Discoveries from this novel tool will further advance our understanding of normal megakaryocyte and platelet biology, and will provide potential therapeutic targets for disorders of platelet number and function to optimize the clinical approach to these patients. Disclosures Callaghan: Bayer: Consultancy, Speakers Bureau; Alnylum: Equity Ownership; Biomarin, Bioverativ, Grifols, Kedrion, Pfizer, Roche/Genentech, Shire, and Spark Therapeutics: Consultancy; Takeda: Consultancy, Research Funding; Sanofi: Consultancy; Global Blood Therapeutics: Consultancy; Novonordisk: Consultancy, Speakers Bureau; Octapharma: Consultancy; Pfizer: Research Funding; Roche: Research Funding; Shire/Takeda: Speakers Bureau; Roche/Genentech: Speakers Bureau.


1995 ◽  
Vol 128 (5) ◽  
pp. 819-835 ◽  
Author(s):  
D Cox ◽  
J A Ridsdale ◽  
J Condeelis ◽  
J Hartwig

This study extends the observations on the defects in pseudopod formation of ABP-120+ and ABP-120- cells by a detailed morphological and biochemical analysis of the actin based cytoskeleton. Both ABP-120+ and ABP-120- cells polymerize the same amount of F-actin in response to stimulation with cAMP. However, unlike ABP-120+ cells, ABP-120- cells do not incorporate actin into the Triton X-100-insoluble cytoskeleton at 30-50 s, the time when ABP-120 is incorporated into the cytoskeleton and when pseudopods are extended after cAMP stimulation in wild-type cells. By confocal and electron microscopy, pseudopods extended by ABP-120- cells are not as large or thick as those produced by ABP-120+ cells and in the electron microscope, an altered filament network is found in pseudopods of ABP-120- cells when compared to pseudopods of ABP-120+ cells. The actin filaments found in areas of pseudopods in ABP-120+ cells either before or after stimulation were long, straight, and arranged into space filling orthogonal networks. Protrusions of ABP-120- cells are less three-dimensional, denser, and filled with multiple foci of aggregated filaments consistent with collapse of the filament network due to the absence of ABP-120-mediated cross-linking activity. The different organization of actin filaments may account for the diminished size of protrusions observed in living and fixed ABP-120- cells compared to ABP-120+ cells and is consistent with the role of ABP-120 in regulating pseudopod extension through its cross-linking of actin filaments.


Sign in / Sign up

Export Citation Format

Share Document