scholarly journals C/EBPδ regulates cell cycle and self-renewal of human limbal stem cells

2007 ◽  
Vol 177 (6) ◽  
pp. 1037-1049 ◽  
Author(s):  
Vanessa Barbaro ◽  
Anna Testa ◽  
Enzo Di Iorio ◽  
Fulvio Mavilio ◽  
Graziella Pellegrini ◽  
...  

Human limbal stem cells produce transit amplifying progenitors that migrate centripetally to regenerate the corneal epithelium. Coexpression of CCAAT enhancer binding protein δ (C/EBPδ), Bmi1, and ΔNp63α identifies mitotically quiescent limbal stem cells, which generate holoclones in culture. Upon corneal injury, a fraction of these cells switches off C/EBPδ and Bmi1, proliferates, and differentiates into mature corneal cells. Forced expression of C/EBPδ inhibits the growth of limbal colonies and increases the cell cycle length of primary limbal cells through the activity of p27Kip1 and p57Kip2. These effects are reversible; do not alter the limbal cell proliferative capacity; and are not due to apoptosis, senescence, or differentiation. C/EBPδ, but not ΔNp63α, indefinitely promotes holoclone self-renewal and prevents clonal evolution, suggesting that self-renewal and proliferation are distinct, albeit related, processes in limbal stem cells. C/EBPδ is recruited to the chromatin of positively (p27Kip1 and p57Kip2) and negatively (p16INK4A and involucrin) regulated gene loci, suggesting a direct role of this transcription factor in determining limbal stem cell identity.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2617-2617
Author(s):  
Fumio Arai ◽  
Kentaro Hosokawa ◽  
Yumiko Nojima ◽  
Toshio Suda

Abstract Abstract 2617 Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood cell production throughout the lifetime. Appropriate control of HSC self-renewal is critical for the maintenance of hematopoietic homeostasis. Telomeres are nucleoprotein structures that cap the ends of eukaryotic chromosomes, and shelterin is required for the stability of telomeres. It is known that HSCs have telomerase activity and maintains telomere lengths longer than those of differentiated cells. The accelerated telomere erosion reduces the long-term repopulating capacity of HSCs in mutant mice, suggesting that keeping the telomerase activity and telomere structures is critical for the maintenance of HSCs. On the other hand, it has been shown that the maintenance of cell cycle quiescence and self-renewal activity of HSCs largely depend on the interaction with the bone marrow niches. We previously reported that the interaction of Tie2 in HSCs with its ligand angiopietin-1 (Ang-1) in niche cells in bone marrow (BM) endosteum is critical for the maintenance of HSC quiescence (Arai 2004). In this study, we found that Ang-1 upregulated the expression of protection of telomeres 1A (Pot1a) in side-population (SP) cells within Lin–Sca-1+c-Kit+ (LSK) fraction, and further investigated the role of Pot1a in the regulation of HSCs. Pot1 has been proposed to form a part of the six-protein shelterin complex at telomeres. In mice, there are two genes encoding Pot1-related proteins, Pot1a and Pot1b. Knockout of Pot1a results in early embryonic lethality, whereas mice lacking Pot1b are alive and fertile, suggesting that Pot1a is essential for mouse development. We found that long-term HSC population, LSK-CD34– cells, expressed higher levels of Pot1a than short-term HSCs population, LSK-CD34+ cells, both in transcriptional and protein level. To analyze the function of Pot1a in the maintenance of HSCs, we transduced Pot1a in LSK cells and examined the colony formation and long-term BM reconstitution capacities. Overexpression of Pot1a increased the size of colonies compared to control. In addition, the number of high proliferative potential colony-forming cells (HPP-CFC) was increased by the overexpression of Pot1a after long-term culture. There was no significant difference in long-tern reconstitution capacity after the primary bone marrow transplantation (BMT) between Pot1a-transduced LSK cells and control. After the secondary BMT, however, Pot1a-transduced LSK cells showed higher reconstitution activity than control. Moreover, Pot1a-transduced cells increased the frequency of Ki67-negative cells after the primary and the secondary BMT compared with control. Next, we transduced Pot1a shRNA into LSK cells and examined the effect of Pot1a-knockdown on the regulation of HSCs. The number of colonies derived from Pot1a-knockdown LSK cells was significantly decreased compared to control. In addition, knockdown of Pot1a significantly reduced long-term reconstitution activity of LSK cells after BMT. These data suggest that Pot1a plays a critical role in the maintenance of self-renewal activity and cell cycle quiescence of HSCs. We will also discuss about the dependence of the Pot1a function in HSCs on the telomerase activity. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


2006 ◽  
Vol 69 (12) ◽  
pp. 983-991 ◽  
Author(s):  
Enzo Di Iorio ◽  
Vanessa Barbaro ◽  
Stefano Ferrari ◽  
Claudio Ortolani ◽  
Michele De Luca ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2021 ◽  
Author(s):  
Zhi Huang ◽  
Kui Zhai ◽  
Qiulian Wu ◽  
Xiaoguang Fang ◽  
Qian Huang ◽  
...  

Glioblastoma (GBM) is the most lethal brain tumor containing glioma stem cells (GSCs) that promote malignant growth and therapeutic resistance. The self-renewal and tumorigenic potential of GSCs are maintained by core stem cell transcription factors including SOX2. Defining the posttranslational regulation of SOX2 may offer new insights into GSC biology and potential therapeutic opportunity. Here, we discover that HAUSP stabilizes SOX2 through deubiquitination to maintain GSC self-renewal and tumorigenic potential. HAUSP is preferentially expressed in GSCs in perivascular niches in GBMs. Disrupting HAUSP by shRNA or its inhibitor P22077 promoted SOX2 degradation, induced GSC differentiation, impaired GSC tumorigenic potential, and suppressed GBM tumor growth. Importantly, pharmacological inhibition of HAUSP synergized with radiation to inhibit GBM growth and extended animal survival, indicating that targeting HAUSP may overcome GSC-mediated radioresistance. Our findings reveal an unappreciated crucial role of HAUSP in the GSC maintenance and provide a promising target for developing effective anti-GSC therapeutics to improve GBM treatment.


2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


2005 ◽  
Vol 7 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Carl R. Walkley ◽  
Matthew L. Fero ◽  
Wei-Ming Chien ◽  
Louise E. Purton ◽  
Grant A. McArthur

2001 ◽  
Vol 77 (3) ◽  
pp. 357-363 ◽  
Author(s):  
P. P. W. Van Buul ◽  
A. Van Duyn-Goedhart ◽  
T. Beumer ◽  
A. L. Bootsma

Sign in / Sign up

Export Citation Format

Share Document