scholarly journals Some Chemical Properties of Isolated Pea Nucleoli

1959 ◽  
Vol 6 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Herbert Stern ◽  
F. B. Johnston ◽  
G. Setterfield

Isolated nuclei and nucleoli of ungerminated pea embryos have been analyzed chemically for their content of DNA, RNA, zinc, iron, phosphorus, and protein sulfhydryl groups. The values obtained cannot be considered to represent the whole of the living nucleolar body as an undetermined amount of material is extracted from nucleoli in the course of their isolation. Only negligible amounts of DNA have been found in the isolated nucleoli; most of the DNA released on disruption of nuclei appears in a fraction showing very few structures under the light microscope. RNA is more concentrated in the nucleolus than in the nucleus or cytoplasm, but since nucleolar protein is 6 per cent of nuclear and less than 1 per cent of cytoplasmic protein, the total amount of nucleolar RNA is comparatively small. None of the other components listed occurs in high concentration in either nucleus or nucleolus.

1958 ◽  
Vol 4 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Rachel McMaster-Kaye ◽  
J. Herbert Taylor

Patterns of radioisotope incorporation are useful characteristics in describing cellular RNA fractions, and have indicated a distinctive "nuclear" RNA. In order to characterize the RNA fractions of the two nuclear components, nucleoli and chromatin, and to determine thereby the precise localization of the RNA typical of isolated nuclei, time-courses of P32 incorporation into nucleolar, chromosomal, and cytoplasmic RNA of Drosophila salivary glands have been determined from autoradiograms. Two experiments are reported which cover 12 and 18 hour periods, including an initial 2 hour feeding on P32. Concentrations of RNA-P32 (identified by ribonuclease digestion) were determined by grain counts. After 1 hour only the nucleolar RNA is labelled. Activity is detectible in chromosomal and cytoplasmic RNA after the 2nd hour. The nucleolar fraction reaches its maximum activity shortly after transfer of the larvae to non-radioactive food, the other fractions several hours later. Maximum activities persist in the chromosomal and cytoplasmic fractions; nucleolar activity decreases after the 9th hour. The observed differences in times at which incorporation begins and maximum activities are reached, and in maintenance of maximum activities indicate that chromosomal and nucleolar RNA are distinct fractions. The metabolic characteristics which have been ascribed to "nuclear" RNA apply only to the nucleolar fraction.


Author(s):  
D. R. Abrahamson ◽  
P. L. St.John ◽  
E. W. Perry

Antibodies coupled to tracers for electron microscopy have been instrumental in the ultrastructural localization of antigens within cells and tissues. Among the most popular tracers are horseradish peroxidase (HRP), an enzyme that yields an osmiophilic reaction product, and colloidal gold, an electron dense suspension of particles. Some advantages of IgG-HRP conjugates are that they are readily synthesized, relatively small, and the immunolabeling obtained in a given experiment can be evaluated in the light microscope. In contrast, colloidal gold conjugates are available in different size ranges and multiple labeling as well as quantitative studies can therefore be undertaken through particle counting. On the other hand, gold conjugates are generally larger than those of HRP but usually can not be visualized with light microscopy. Concern has been raised, however, that HRP reaction product, which is exquisitely sensitive when generated properly, may in some cases distribute to sites distant from the original binding of the conjugate and therefore result in spurious antigen localization.


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


1925 ◽  
Vol 42 (4) ◽  
pp. 483-497 ◽  
Author(s):  
Jacques J. Bronfenbrenner ◽  
Charles Korb

The experiments reported above confirm the fact that lytic principle is distributed in active solution in a state of indivisible units. This permits its quantitative evaluation by serial dilution, as well as by plating on agar. The latter method, however, often gives readings considerably lower than those obtained by the broth dilution method of titration. By varying the concentration of agar it has been possible to show that the discrepancy is due to adsorption of the lytic agent on agar. When the concentration of the latter is increased from 0.3 per cent to 2.5 per cent the number of plaques of lysis is reduced more than 100 times. At the same time the average size of the plaques also decreases approximately to one-tenth of the original. The size, as well as the number of plaques, has been found to depend also on the condition of the culture employed in titration. Thus, when the culture exposed to the action of lytic agent is composed of young susceptible bacteria, the greater the concentration of bacteria, the smaller the plaques. When the culture is composed partly of young and partly of old susceptible bacteria, both the size and the number of the plaques are diminished with the increase in the relative concentration of old bacteria. On the other hand, presence in the culture of resistant bacteria does not affect either the size or the number of the plaques so long as the relative concentration of susceptible bacteria in the culture is sufficient to allow formation of them. The plaques appearing in the presence of a high concentration of resistant variants in the culture are relatively indistinct owing to overgrowth. Under carefully controlled conditions the size of plaques is found to be determined by the character of the lytic filtrate. Thus in the case of lytic agents which act upon more than one bacterial species the size of the plaques remains constant, irrespective of the bacterial substratum used for the production of the active filtrate.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Sadot Herrera-Sosa ◽  
Gonzalo Martínez-Barrera ◽  
Carlos Barrera-Díaz ◽  
Epifanio Cruz-Zaragoza

In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with) irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16%) are compensated with the use of high concentration of waste tire particles (30%), which ensures that the concrete will not significantly increase the cost.


2015 ◽  
Vol 1117 ◽  
pp. 107-113 ◽  
Author(s):  
Ilariy Rarenko ◽  
Dmytro Korbutyak ◽  
Volodymyr Koshkin ◽  
Boris Danilchenko ◽  
Leonid Kosyachenko ◽  
...  

Semiconductor Hg3In2Te6 crystals and their analogous are solid solutions of In2Te3 and HgTe. Hg3In2Te6 crystals are congruently melted as chemical compound. Like In2Te3 the Hg3In2Te6 crystal has cubic crystal lattice with stoichiometric vacancies in their crystal structure. The electroconductivity, photoconductivity, mechanical, chemical properties of the crystals do not deteriorate after their irradiation by γ-photons with energies up to 1 MeV and doses up to 1018 cm-2 , by electrons with energies up to 300 MeV and doses up to 1019 cm-2 and by mixed reactor irradiation (filtered slow neutrons) with doses up to 1019 cm-2 [1,2]. This feature is determined by high concentration (~1021 cm-3) of stoihiometric vacancies (Vs) in crystal structure, where every third In-cation node is empty. These Vs are electroneutral, they capture all impurity atoms in these crystals and kept them in electroneutral state too. On the other hand this feature doesn't allow to form direct p-n junctions in these crystals by introducing the impurities. However, we have developed p-n junction analogues in form of Schottki diodes and corresponding photodiodes with semitransparent metal layer on single crystal Hg3In2Te6 substrate that allows irradiation to get into active region preserving this way all the advantages compared to p-n junction.


1978 ◽  
Vol 56 (1) ◽  
pp. 48-53 ◽  
Author(s):  
N. Ogawa ◽  
T. Thompson ◽  
H. G. Friesen

The concentrations of a somatostatin-binding protein, found in the cytosol of a number of rat tissues, are similar in both sexes, and hypophysectomy has little or no effect on the level of binding protein in tissue extracts. On the other hand, streptozotocin-induced diabetes mellitus causes a modest decrease. The somatostatin-binding proteins obtained from extracts of several rat tissues are not only similar in molecular weight but also exhibit a similar isoelectric point and electrophoretic mobility. Agents that block thiol groups or prevent the formation of disulfide bridges markedly decrease the binding of somatostatin to the cytoplasmic protein. Studies using thiol reagents and gel filtration suggest that free thiol groups in somatostatin-binding protein are important for the binding of somatostatin.


2018 ◽  
Vol 11 (9) ◽  
pp. 770-780 ◽  
Author(s):  
Guang Liu ◽  
Limei Wang ◽  
Junmin Pan

Abstract The motility of cilia or eukaryotic flagella is powered by the axonemal dyneins, which are preassembled in the cytoplasm by proteins termed dynein arm assembly factors (DNAAFs) before being transported to and assembled on the ciliary axoneme. Here, we characterize the function of WDR92 in Chlamydomonas. Loss of WDR92, a cytoplasmic protein, in a mutant wdr92 generated by DNA insertional mutagenesis resulted in aflagellate cells or cells with stumpy or short flagella, disappearance of axonemal dynein arms, and diminishment of dynein arm heavy chains in the cytoplasm, suggesting that WDR92 is a DNAAF. Immunoprecipitation of WDR92 followed by mass spectrometry identified inner dynein arm heavy chains and multiple DNAAFs including RuvBL1, RPAP3, MOT48, ODA7, and DYX1C. The PIH1 domain-containing protein MOT48 formed a R2TP-like complex with RuvBL1/2 and RPAP3, while PF13, another PIH1 domain-containing protein with function in dynein preassembly, did not. Interestingly, the third PIH1 domain-containing protein TWI1 was not related to flagellar motility. WDR92 physically interacted with the R2TP-like complex and the other identified DNNAFs. Our data suggest that WDR92 functions in association with the HSP90 co-chaperone R2TP-like complex as well as linking other DNAAFs in dynein preassembly.


Sign in / Sign up

Export Citation Format

Share Document