scholarly journals Dynamic changes in E-protein activity regulate T reg cell development

2014 ◽  
Vol 211 (13) ◽  
pp. 2651-2668 ◽  
Author(s):  
Ping Gao ◽  
Xiaojuan Han ◽  
Qi Zhang ◽  
Zhiqiong Yang ◽  
Ivan J. Fuss ◽  
...  

E-proteins are TCR-sensitive transcription factors essential for intrathymic T cell transitions. Here, we show that deletion of E-proteins leads to both enhanced peripheral TGF-β–induced regulatory T (iT reg) cell and thymic naturally arising T reg cell (nT reg cell) differentiation. In contrast, deletion of Id proteins results in reduced nT reg cell differentiation. Mechanistic analysis indicated that decreased E-protein activity leads to de-repression of signaling pathways that are essential to Foxp3 expression. Decreased E-protein binding to an IL-2Rα enhancer locus facilitated TCR-induced IL-2Rα expression. Similarly, decreased E-protein activity facilitated TCR-induced NF-κB activation and generation of c-Rel. Consistent with this, microarray analysis indicated that cells with E-protein depletion that are not yet expressing Foxp3 exhibit activation of the IL-2 and NF-κB signaling pathways as well as enhanced expression of many of the genes associated with Foxp3 induction. Finally, studies using Nur77-GFP mice to monitor TCR signaling showed that TCR signaling strength sufficient to induce Foxp3 differentiation is accompanied by down-regulation of E-protein levels. Collectively, these data suggest that TCR stimulation acts in part through down-regulation of E-protein activity to induce T reg cell lineage development.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2946-2946
Author(s):  
Yangsheng Zhou ◽  
Xia Liu ◽  
Lian Xu ◽  
Zachary Hunter ◽  
Jenny Sun ◽  
...  

Abstract Abstract 2946 Poster Board II-922 Waldenström's macroglobulinemia (WM) is an incurable B cell disorder with a lymphoplasmacytic infiltrate in the bone marrow (BM) and IgM monoclonal gammopathy. WM tumor cells show variable differentiation, ranging from mature B-cells to plasma cells, which likely results from failure to fully undergo differentiation. In this study, we analyzed the expression of several genes involved in B cell differentiation by real time RT-PCR, such as Ets factors, the basic helix-loop-helix (bHLH) E proteins, as well as the inhibitors of DNA binding (Id) proteins which antagonize E protein activity. Comparison of BM CD19+ B cells obtained from 13 WM patients with 6 age-matched healthy donors showed that expression of the Ets factor Spi-B was increased four-fold, while Id2 was decreased three-fold. However, transcript levels of E proteins were similar between the two groups. Transduction of Spi-B in BCWM.1 WM cells resulted in two-fold higher levels of Id2 and five-fold lower levels of E2-2 compared with control. Id2 transduced BCWM.1 cells expressed two-fold lower levels of E2-2 and Spi-B. Taken together, these results implicate that increased expression of Spi-B alone cannot suppress Id2 transcription in the absence of E2-2 activity. Interestingly, overexpressing Spi-B while concomitantly knocking down Id2 increased the expression of the XBP-1 splicing isoform 2.5-fold without changing levels of Blimp-1 and IRF4. Moreover, inhibition of Spi-B expression by RNA interference or forced expression of Id2 in transduced BCWM.1 cells induced a significant decrease of anti-apoptotic Bcl-2. Importantly, we also showed that Spi-B co-immunoprecipated with Blimp-1 in nuclear extracts. Collectively, these data suggest that the regulatory network of the Spi-B, E2-2, and Id2 plays an essential role in B cell differentiation as well as the pathogenesis of WM, and suggests that Spi-B overexpression may block WM cell differentiation by sequestration of Blimp-1 while promoting tumor cell survival though up-regulation of Bcl-2. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 116 (10) ◽  
pp. 4471-4480 ◽  
Author(s):  
Xiaojuan Han ◽  
Huarong Huang ◽  
Ping Gao ◽  
Qi Zhang ◽  
Xinyuan Liu ◽  
...  

T cell antigen receptor (TCR) signaling is essential for the differentiation and maintenance of effector regulatory T (Treg) cells. However, the contribution of individual TCR-dependent genes in Treg cells to the maintenance of immunotolerance remains largely unknown. Here we demonstrate that Treg cells lacking E protein undergo further differentiation into effector cells that exhibit high expression of effector Treg signature genes, including IRF4, ICOS, CD103, KLRG-1, and RORγt. E protein-deficient Treg cells displayed increased stability and enhanced suppressive capacity. Transcriptome and ChIP-seq analyses revealed that E protein directly regulates a large proportion of the genes that are specific to effector Treg cell activation, and importantly, most of the up-regulated genes in E protein-deficient Treg cells are also TCR dependent; this indicates that E proteins comprise a critical gene regulatory network that links TCR signaling to the control of effector Treg cell differentiation and function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy I. Shaw ◽  
Li Dong ◽  
Liqing Tian ◽  
Chenxi Qian ◽  
Yu Liu ◽  
...  

AbstractUSP7, which encodes a deubiquitylating enzyme, is among the most frequently mutated genes in pediatric T-ALL, with somatic heterozygous loss-of-function mutations (haploinsufficiency) predominantly affecting the subgroup that has aberrant TAL1 oncogene activation. Network analysis of > 200 T-ALL transcriptomes linked USP7 haploinsufficiency with decreased activities of E-proteins. E-proteins are also negatively regulated by TAL1, leading to concerted down-regulation of E-protein target genes involved in T-cell development. In T-ALL cell lines, we showed the physical interaction of USP7 with E-proteins and TAL1 by mass spectrometry and ChIP-seq. Haploinsufficient but not complete CRISPR knock-out of USP7 showed accelerated cell growth and validated transcriptional down-regulation of E-protein targets. Our study unveiled the synergistic effect of USP7 haploinsufficiency with aberrant TAL1 activation on T-ALL, implicating USP7 as a haploinsufficient tumor suppressor in T-ALL. Our findings caution against a universal oncogene designation for USP7 while emphasizing the dosage-dependent consequences of USP7 inhibitors currently under development as potential cancer therapeutics.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2857-2869 ◽  
Author(s):  
Francesc X. Donadeu ◽  
Cristina L. Esteves ◽  
Lynsey K. Doyle ◽  
Catherine A. Walker ◽  
Stephanie N. Schauer ◽  
...  

Previous studies showed that under certain conditions LH can stimulate not only adenylate cyclase (AC) but also phospholipase Cβ (PLCβ) signaling in target cells; however, the physiological involvement of PLCβ in LH-induced ovarian follicular cell differentiation has not been determined. To address this, ex vivo expression analyses and specific PLCβ targeting were performed in primary bovine granulosa cells. Expression analyses in cells from small (2.0–5.9 mm), medium (6.0–9.9 mm), and ovulatory-size (10.0–13.9 mm) follicles revealed an increase in mRNA and protein levels of heterotrimeric G protein subunits-αs, -αq, -α11, and -αi2 in ovulatory-size follicles, simultaneous with a substantial increase in LH receptor expression. Among the four known PLCβ isoforms, PLCβ3 (PLCB3) was specifically up-regulated in cells from ovulatory-size follicles, in association with a predominantly cytoplasmic location of PLCB3 in these cells and a significant inositol phosphate response to LH stimulation. Furthermore, RNA interference-mediated PLCB3 down-regulation reduced the ability of LH to induce hallmark differentiation responses of granulosa cells, namely transcriptional up-regulation of prostaglandin-endoperoxide synthase 2 and down-regulation of both aromatase expression and estradiol production. Responses to the AC agonist, forskolin, however, were not affected. In addition, PLCB3 down-regulation did not alter cAMP responses to LH in granulosa cells, ruling out a primary involvement of AC in mediating the effects of PLCB3. In summary, we provide evidence of a physiological involvement of PLCβ signaling in ovulatory-size follicles and specifically identify PLCB3 as a mediator of LH-induced differentiation responses of granulosa cells.


2004 ◽  
Vol 199 (12) ◽  
pp. 1689-1700 ◽  
Author(s):  
Christopher S. Seet ◽  
Rachel L. Brumbaugh ◽  
Barbara L. Kee

The basic helix-loop-helix transcription factors encoded by the E2A gene function at the apex of a transcriptional hierarchy involving E2A, early B cell factor (EBF), and Pax5, which is essential for B lymphopoiesis. In committed B lineage progenitors, E2A proteins have also been shown to regulate many lineage-associated genes. Herein, we demonstrate that the block in B lymphopoiesis imposed by the absence of E2A can be overcome by expression of EBF, but not Pax5, indicating that EBF is the essential target of E2A required for development of B lineage progenitors. Our data demonstrate that EBF, in synergy with low levels of alternative E2A-related proteins (E proteins), is sufficient to promote expression of most B lineage genes. Remarkably, however, we find that E2A proteins are required for interleukin 7–dependent proliferation due, in part, to a role for E2A in optimal expression of N-myc. Therefore, high levels of E protein activity are essential for the activation of EBF and N-myc, whereas lower levels of E protein activity, in synergy with other B lineage transcription factors, are sufficient for expression of most B lineage genes.


2021 ◽  
Author(s):  
Rachel E. Brown ◽  
Justin Jacobse ◽  
Shruti A. Anant ◽  
Koral M. Blunt ◽  
Bob Chen ◽  
...  

Aberrant epithelial differentiation and regeneration pathways contribute to colon pathologies including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). MTG16 (also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 interaction partners include E box-binding basic helix-loop-helix transcription factors (E proteins). MTG16-deficient mice exhibit worse colitis and increased tumor burden in inflammatory carcinogenesis. In this study, we sought to understand the role of MTG16 in colonic epithelial homeostasis and the mechanisms by which MTG16 protects the epithelium in colitis and CAC. We demonstrated that MTG16 deficiency enabled enteroendocrine cell differentiation from secretory precursor cells at the expense of goblet cells. Transcriptomic analysis implicated dysregulated E protein function in MTG16-deficient colon crypts. Using a novel mouse model with a point mutation that disrupts MTG16:E protein complex formation (Mtg16P209T), we established that enteroendocrine:goblet cell balance was dependent on MTG16:E protein interactions and that the shift in lineage allocation was associated with enhanced expression of Neurog3, the central driver of enteroendocrine lineage specification. Furthermore, Mtg16 was upregulated in the previously described Ascl2+, de-differentiating cells that replenish the stem cell compartment in response to colon injury. Mtg16 expression was also increased in dextran sulfate sodium (DSS)-treated mouse colon crypts and in IBD patients compared to unaffected controls. We determined that the effects of MTG16 in regeneration are also dependent on its repression of E proteins, as the colonic epithelium failed to regenerate following DSS-induced injury in our novel mutant mouse model. Finally, we revealed that uncoupling MTG16:E protein interactions contributes to the enhanced tumorigenicity in Mtg16-/- colon in the azoxymethane(AOM)/DSS-induced model of CAC. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colonic differentiation and regeneration.


2020 ◽  
Author(s):  
Pankaj Acharya ◽  
Shilpa Sampathi ◽  
David K. Flaherty ◽  
Brittany K. Matlock ◽  
Christopher S. Williams ◽  
...  

AbstractThe ETO/MTG family of transcriptional co-repressors play a key role in adult stem cell functions in various tissues. These factors are commonly found in complex with E proteins such as E2A, HEB, and Lyl1 as well as PRDM14 and BTB/POZ domain factors. Structural studies identified a region in the first domain of MTGs that is conserved in the Drosophila homologue Nervy (Nervy Homology Domain-1, or NHR1) that is essential for ETO/MTG8 to inhibit E protein-dependent transcription. The Cancer Genome Atlas (TCGA) identified cancer associated single nucleotide variants (SNVs) near the MTG16:E protein contact site. We tested these SNVs using sensitive yeast two-hybrid association assays, which suggested that only P209T significantly affected E protein binding. We then used CRISPR-Cas9 and homology directed DNA repair to insert P209T and a known inactivating mutation, F210A, into NHR1 of Mtg16 in the germ line of mice. These mice developed normally, but in competitive bone marrow transplantation assays, the F210A-containing stem cells failed to contribute to lymphopoiesis, while P209T mutant cells were reduced in mature T cell populations. High content fluorescent activated analytical flow cytometry assays identified a defect in the multi-potent progenitor to common lymphoid progenitor transition during lymphopoiesis. These data indicate that the cancer associated changes are likely benign polymorphisms, and the MTG:E protein association is required for lymphopoiesis, but less important for myelopoiesis and stem cell functions.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1229-1229
Author(s):  
Hiyaa Singhee Ghosh ◽  
Kang Liu ◽  
Scott Hiebert ◽  
Boris Reizis

Abstract Abstract 1229 Eto-family proteins were first discovered as translocation fusion in AML1 (Runx1), a gene most frequently disrupted in human leukemia. Of the translocations that disrupt the AML1 gene in leukemia, Eto1(MTG8)/AML1 translocation accounts for ∼15% of Acute Myeloid Leukemia (AML). The Eto-family proteins function as transcriptional co-repressors that bind to DNA-binding transcription factors to regulate their target genes. Eto2 (MTG16) is an Eto-family member implicated in secondary or therapy-related AML, although recent reports provide evidence for Eto2/MTG16 translocations in de novo AML as well. Furthermore, recent studies have highlighted a role for MTG16 in HSC self renewal and T cell lineage specification, indicating its emerging role overall in hematopoiesis. The co-repressor function of Eto for E-proteins has been described previously in the context of Eto/AML1 fusion proteins. E-proteins are a class of basic-helix-loop-helix (bHLH) transcription factors that play an important role in hematopoiesis. Among the E-protein family, the role of E2A has been extensively studied in B and T cell development. Recently, our lab discovered the specific requirement of the E-protein E2-2 in the development of Plasmacytoid Dendritic Cells (pDC). pDC are the professional interferon producing (IPC) cells of our immune system important in anti-viral, anti-tumor and auto-immunity. pDC are a subtype of the antigen-presenting classical Dendritic Cells (cDC) with distinct structural and functional properties. Recently, we demonstrated that the putative cell fate plasticity of pDC was a direct manifestation of continuous E2-2 function. Using pDC-reporter mice in which E2-2 could be inducibly deleted from mature pDC we showed that the continuous expression of E2-2 was required to prevent the conversion of pDC to cDC. Here we report our current studies that investigate the molecular players underlying the E2-2 orchestrated genetic program for pDC cell fate decision and maintenance. Analyzing the transcriptome of the transitioning pDC, we have identified MTG16 as an important player in the fine regulation of DC lineage decisions. Using knock-out and chimeric mice, progenitor studies, promoter and biochemical analyses, we demonstrate MTG16 as an important E2-2 corepressor, promoting E2-2 mediated genetic program. We report that in order to facilitate the pDC cell fate, MTG16 enables E2-2 to suppress the cDC gene expression program, by negatively regulating the E-protein inhibitor Id2. The cell-fate conversion through deletion or overexpression of lineage-deciding transcriptional regulators has been described previously for B- and T cells. Theseh studies highlight the susceptibility of blood cells to aberrant functions of crucial transcriptional regulators, potentially leading to pathologic conditions. Therefore, understanding the interrelationship between the various genetic regulators that control lineage decisions and cell-fate plasticity is cardinal to accurate diagnosis and therapy for hematopoietic pathologies. Our study provides the first evidence for a physiological role of E-protein/Eto-protein interaction in dendritic cell lineage decision. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra Bajana ◽  
Kevin Thomas ◽  
Constantin Georgescu ◽  
Ying Zhao ◽  
Jonathan D. Wren ◽  
...  

Dendritic cell (DC) specification and differentiation are controlled by a circuit of transcription factors, which regulate the expression of DC effector genes as well as the transcription factors themselves. E proteins are a widely expressed basic helix-loop-helix family of transcription factors whose activity is suppressed by their inhibitors, ID proteins. Loss-of-function studies have demonstrated the essential role of both E and ID proteins in different aspects of DC development. In this study, we employed a gain-of-function approach to illustrate the importance of the temporal control of E protein function in maintaining balanced differentiation of conventional DC (cDC) subsets, cDC1 and cDC2. We expressed an E protein mutant, ET2, which dimerizes with endogenous E proteins to overcome inhibition by ID proteins and activate the transcription of E protein targets. Induction of ET2 expression at the hematopoietic progenitor stage led to a dramatic reduction in cDC2 precursors (pre-cDC2s) with little impact on pre-cDC1s. Consequently, we observed decreased numbers of cDC2s in the spleen and lung, as well as in FLT3L-driven bone marrow-derived DC cultures. Furthermore, in mice bearing ET2, we detected increased expression of the IRF8 transcription factor in cDC2s, in which IRF8 is normally down-regulated and IRF4 up-regulated. This aberrant expression of IRF8 induced by ET2 may contribute to the impairment of cDC2 differentiation. In addition, analyses of the transcriptomes of splenic cDC1s and cDC2s revealed that ET2 expression led to a shift, at least in part, of the transcriptional profile characteristic of cDC2s to that of cDC1. Together, these results suggest that a precise control of E protein activity is crucial for balanced DC differentiation.


2005 ◽  
Vol 201 (12) ◽  
pp. 1899-1903 ◽  
Author(s):  
Yongxue Yao ◽  
Wei Li ◽  
Mark H. Kaplan ◽  
Cheong-Hee Chang

Interleukin (IL)-4 is known to be the most potent cytokine that can initiate Th2 cell differentiation. Paradoxically, IL-4 instructs dendritic cells (DCs) to promote Th1 cell differentiation. We investigated the mechanisms by which IL-4 directs CD4 T cells toward the Th1 cell lineage. Our study demonstrates that the IL-4–mediated induction of Th1 cell differentiation requires IL-10 production by DCs. IL-4 treatment of DCs in the presence of lipopolysaccharide or CpG resulted in decreased production of IL-10, which was accompanied by enhanced IL-12 production. In IL-10–deficient DCs, the level of IL-12 was greatly elevated and, more importantly, the ability of IL-4 to up-regulate IL-12 was abrogated. Interestingly, IL-4 inhibited IL-10 production by DCs but not by B cells. The down-regulation of IL-10 gene expression by IL-4 depended on Stat6 and was at least partly caused by decreased histone acetylation of the IL-10 promoter. These data indicate that IL-4 plays a key role in inducing Th1 cell differentiation by instructing DCs to produce less IL-10.


Sign in / Sign up

Export Citation Format

Share Document