scholarly journals Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer

2016 ◽  
Vol 213 (5) ◽  
pp. 827-840 ◽  
Author(s):  
Lucia D’Amico ◽  
Sahil Mahajan ◽  
Aude-Hélène Capietto ◽  
Zhengfeng Yang ◽  
Ali Zamani ◽  
...  

Tumor–stroma interactions contribute to tumorigenesis. Tumor cells can educate the stroma at primary and distant sites to facilitate the recruitment of heterogeneous populations of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs). MDSCs suppress T cell responses and promote tumor proliferation. One outstanding question is how the local and distant stroma modulate MDSCs during tumor progression. Down-regulation of β-catenin is critical for MDSC accumulation and immune suppressive functions in mice and humans. Here, we demonstrate that stroma-derived Dickkopf-1 (Dkk1) targets β-catenin in MDSCs, thus exerting immune suppressive effects during tumor progression. Mice bearing extraskeletal tumors show significantly elevated levels of Dkk1 in bone microenvironment relative to tumor site. Strikingly, Dkk1 neutralization decreases tumor growth and MDSC numbers by rescuing β-catenin in these cells and restores T cell recruitment at the tumor site. Recombinant Dkk1 suppresses β-catenin target genes in MDSCs from mice and humans and anti-Dkk1 loses its antitumor effects in mice lacking β-catenin in myeloid cells or after depletion of MDSCs, demonstrating that Dkk1 directly targets MDSCs. Furthermore, we find a correlation between CD15+ myeloid cells and Dkk1 in pancreatic cancer patients. We establish a novel immunomodulatory role for Dkk1 in regulating tumor-induced immune suppression via targeting β-catenin in MDSCs.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Xiao Z Shen ◽  
Peng Shi ◽  
Jorge Giani ◽  
Ellen Bernstein ◽  
Kenneth E Bernstein

The immune system plays a critical role in the development of hypertension. The immune response consists of pro-inflammatory cells, but also immunosuppressive cells that reduce T cell function. An important category of natural immunosuppressive cell is myeloid-derived suppressor cells (MDSC). We now show that blood and spleen CD11b+ Gr1+ myeloid cells are elevated 2-fold in both angiotensin II and L-NAME induced hypertension. These increased myeloid cells are MDSC in that they elevate IL-4R expression and suppress T cell proliferation. When hypertensive mice were depleted of MDSC, using either anti-Gr1 antibody or gemcitabine, there was a 15 mmHg rise in blood pressure and aggravation of T cells activation with increased production of IFN-γ, TNFα and IL-17 in both spleen and kidney. In contrast, adoptive transfer of MDSC reduced blood pressure in angiotensin-II induced hypertension by 25 mmHg (see Figure). These data suggest a new concept, that the accumulation of MDSC is a compensatory response to the inflammation induced by hypertension. They also indicate that MDSC play an important role in regulating blood pressure.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 350
Author(s):  
Seong Mun Jeong ◽  
Yeon-Jeong Kim

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells which accumulate in stress conditions such as infection and tumor. Astaxanthin (ATX) is a well-known antioxidant agent and has a little toxicity. It has been reported that ATX treatment induces antitumor effects via regulation of cell signaling pathways, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling. In the present study, we hypothesized that treatment with ATX might induce maturation of MDSCs and modulate their immunosuppressive activity. Both in vivo and in vitro treatment with ATX resulted in up-regulation of surface markers such as CD80, MHC class II, and CD11c on both polymorphonuclear (PMN)-MDSCs and mononuclear (Mo)-MDSCs. Expression levels of functional mediators involved in immune suppression were significantly reduced, whereas mRNA levels of Nrf2 target genes were increased in ATX-treated MDSCs. In addition, ATX was found to have antioxidant activity reducing reactive oxygen species level in MDSCs. Finally, ATX-treated MDSCs were immunogenic enough to induce cytotoxic T lymphocyte response and contributed to the inhibition of tumor growth. This demonstrates the role of ATX as a regulator of the immunosuppressive tumor environment through induction of differentiation and functional conversion of MDSCs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2779-2779
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Cupri ◽  
...  

Abstract Abstract 2779 Background: Tumor cells are able to develop immune evasion mechanisms which induce a state of immune tolerance and inactivate tumor-specific T cells. In this context, in some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. Aim: The aim of this study was to analyze MDSCs and investigate their involvement in T-cell anergy of CML patients. Methods: MDSCs were analyzed in peripheral blood (PB) of 13 CML patients (at diagnosis and during therapy) and healthy donors (HD; n=20) by cytofluorimetric analysis (CD14+DR- for monocytic MDSCs and CD11b+CD33+CD14-DR- for granulocytic MDSCs). Arginase 1 expression was assessed in PB of HD and CML patient using real time PCR. Purification of granulocytes, monocytes and lymphocytes from PB was performed by a positive magnetic separation kit (EasySep, STEMCELL Technologies). Arginase activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. To evaluate the activation of CD3+ T lymphocytes after incubation with phytoemagglutinin, we analyzed at 24, 48, 72 h the following markers: CD69+, CD71+, DR+. Microvesicles were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results: CML patients showed high levels of monocytic and granulocytic MDSCs at diagnosis in comparison to HD (63±8 and 83±12,2% respectively in CML vs 4,9±2,1 and 55,8±5,3% respectively in HD; p<0.001) while after 3–6 months of tyrosine kinase inhibitors (TKIs) therapy MDSC levels returned to normal values. Either in PB and in the purified granulocytes subpopulation, arginase1 expression showed a 30 fold increase in CML at diagnosis (CML vs HD: p<0.01) and decreased after therapy. We also evaluated arginase enzymatic activity in granulocytes and we found it increased in CML patients (n=4) compared to HD (n=5) (p<0.05). CML as well as HD T lymphocytes showed a normal activation in vitro which was significantly lost when they was incubated with CML serum (n=4). In addition, an increase of monocytic MDSCs in vitro was observed after incubation of HD monocytes with CML serum (39±6%; p<0.01) or microvescicles (9,2±1,2%; p<0.05) compared to control serum. Conclusions: Granulocytic and monocytic MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. Their levels also correlates with Arginase 1 expression and enzymatic activity in granulocytes. CML serum as well as CML microvesicles increase the percentage of HD monocytic MDSCs. Moreover, CML serum leads to anergy of T lymphocytes, probably by Arginase 1 secretion. Disclosures: Off Label Use: Eltrombopag is a thrombopoietin receptor agonist indicated for the treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1012-1012
Author(s):  
Parvin Forghani ◽  
Edmund K Waller

Abstract Introduction: Myeloid differentiation primary response gene 88 (Myd 88) is an important adaptor molecule for the activation of NADPH oxidase and regulation of arginase-1, which are responsible for the suppressive function of myeloid-derived suppressor cells (MDSCs). Blockade of Myd88 signaling induces antitumor effects in mice by skewing the immunosuppressive function of myeloid-derived suppressor cells. As the PD-L1/PD-1 axis has been characterized as a potent inhibitor of immune activation, particularly through inhibition of effector T cell function, we characterized the effect of Myd88 on checkpoint expression on tumor-infiltrating MDSC/T cells in a murine model melanoma. Methods: Pathogen-free 8-10-week-old WT(B6-background) and Myd 88−/− mice that been backcrossed to a C57BL/6 genetic background were challenged with 1 × 106 B16 (F1) tumor cells s.c. On day 14, mice were sacrificed and spleen and tumors were removed and digested into single-cell suspensions, blocked with anti-FcR mAbs and analyzed for surface and intracellular staining by flow cytometry. We analyzed CD11b+/Gr-1+hi/int myeloid cells subsets and T cells in the blood, spleen and tumors of mice by flow cytomery. Results: The growth of B16 melanoma tumor was significantly slower in Myd 88−/− mice compared with WT mice. No significant difference between two groups was found in the frequency of absolute number of MDSC subsets and expression of PDL1 check-point marker on spleen-derived MDSC subsets. In contrast CD4(+) and C8(+) T cells residing in spleens of Myd88(-/-) mice showed increased expression of TNF-α/IFN-α and GrZB compared with T cells from wild-type mice following short-term activation with PMA/iono. Of note, the frequencies and absolute numbers of infiltrating CD11b+/Gr1+ MDSC in tumor-bearing Myd 88−/− mice were lower than those in WT mice. Also we found that viable CD11b+/Gr1+ MDSC subsets from WT mice expressed higher level of PD-L1 compared with MDSCs from Myd 88−/− mice in concordance with the reduced expression of PD-1 on tumor infiltrating CD4+ T cells in Myd 88−/− mice. Collectively, the profile of PD-L1 and PD-1 expression in tumor microenvironments is favorably altered to enhance adaptive immune response in myd 88 KO vs WT mice harboring B16 melanoma. Conclusion: The results of this study provide further evidence that blocking Myd 88 signaling increases anti tumor immunity against melanoma, and that the enhanced immunity can be explained, in part, by reduction of expression PDL1/PD1 immune checkpoint molecules. Considering the importance of tumor-infiltrating MDSCs in regulating anti tumor immunity in the tumor microenvironment, our findings could provide insight into the design of new therapeutics targeting Myd 88. Further experiments are needed to show how alteration in profile of PDL1 checkpoint expression on MDSCs influences anti-tumor T cell responses. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
pp. 187
Author(s):  
Nikoleta Bizymi ◽  
Helen A. Papadaki

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunomodulating properties, mainly acting by suppressing T-cell responses [...]


2021 ◽  
Vol 9 (11) ◽  
pp. e003237
Author(s):  
Saisha A Nalawade ◽  
Paul Shafer ◽  
Pradip Bajgain ◽  
Mary K McKenna ◽  
Arushana Ali ◽  
...  

BackgroundSuccessful targeting of solid tumors such as breast cancer (BC) using chimeric antigen receptor (CAR) T cells has proven challenging, largely attributed to the immunosuppressive tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) inhibit CAR T cell function and persistence within the breast TME. To overcome this challenge, we have developed CAR T cells targeting tumor-associated mucin 1 (MUC1) with a novel chimeric costimulatory receptor that targets tumor necrosis factor–related apoptosis-inducing ligand receptor 2 (TR2) expressed on MDSCs.MethodsThe function of the TR2.41BB costimulatory receptor was assessed by exposing non-transduced (NT) and TR2.41BB transduced T cells to recombinant TR2, after which nuclear translocation of NFκB was measured by ELISA and western blot. The cytolytic activity of CAR.MUC1/TR2.41BB T cells was measured in a 5-hour cytotoxicity assay using MUC1+ tumor cells as targets in the presence or absence of MDSCs. In vivo antitumor activity was assessed using MDSC-enriched tumor-bearing mice treated with CAR T cells with or without TR2.41BB.ResultsNuclear translocation of NFκB in response to recombinant TR2 was detected only in TR2.41BB T cells. The presence of MDSCs diminished the cytotoxic potential of CAR.MUC1 T cells against MUC1+ BC cell lines by 25%. However, TR2.41BB expression on CAR.MUC1 T cells induced MDSC apoptosis, thereby restoring the cytotoxic activity of CAR.MUC1 T cells against MUC1+ BC lines. The presence of MDSCs resulted in an approximately twofold increase in tumor growth due to enhanced angiogenesis and fibroblast accumulation compared with mice with tumor alone. Treatment of these MDSC-enriched tumors with CAR.MUC1.TR2.41BB T cells led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared with CAR.MUC1 (469.79±81.46 mm3) or TR2.41BB (434.86±64.25 mm3) T cells alone. CAR.MUC1.TR2.41BB T cells also demonstrated improved T cell proliferation and persistence at the tumor site, thereby preventing metastases. We observed similar results using CAR.HER2.TR2.41BB T cells in a HER2+ BC model.ConclusionsOur findings demonstrate that CAR T cells that coexpress the TR2.4-1BB receptor exhibit superior antitumor potential against breast tumors containing immunosuppressive and tumor promoting MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi93
Author(s):  
Gregory Takacs ◽  
Christian Kreiger ◽  
Defang Luo ◽  
Joseph Flores-Toro ◽  
Loic Deleyrolle ◽  
...  

Abstract INTRODUCTION Mounting evidence suggests infiltrating immune-suppressive cells contribute to immune checkpoint inhibitor resistance and poor survival in Glioblastoma (GBM) patients. We have previously shown glioma-associated monocytic-myeloid derived suppressor cells (M-MDSCs) express chemokine receptors CCR2 and CX3CR1. Genetic and pharmacologic targeting of CCR2 promoted sequestration of M-MDSCs in the bone marrow and, in combination with PD-1 blockade, slowed progression of KR158 and 005GSC murine gliomas. This combination treatment also enhanced infiltration of IFNg-producing T cells that were less exhausted. Although CCR2+/CX3CR1+ cells display surface markers indicative of bone marrow-derived M-MDSCs, additional studies are needed to formally establish the source of these cells and to determine if they exhibit an immune-suppressive phenotype as well as migrate to the CCR2 ligands, CCL2 and/or CCL7. OBJECTIVE Evaluate the source, migration, and immune suppressive function of CCR2+/CX3CR1+ myeloid cells from glioma bearing mice. METHODS To identify the source of CCR2+/CX3CR1+ myeloid cells, chimeric wild type mice harboring bone marrow cells from transgenic CCR2WT/RFP/CX3CR1WT/GFP mice were generated. CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from either wild-type or CCR2WT/RFP/CX3CR1WT/GFP naïve and glioma-bearing mice in order to evaluate their immune suppressive phenotype and ability to migrate to CCL2 and CCL7. RESULTS CCR2+/CX3CR1+ cells are present in glioma isolates from chimeric mice, indicative of a bone marrow-derived cell population, and are detectable within the tumor microenvironment as early as 3 days post orthotopic implantation of KR158 cells; these cells accumulate as tumors increase in size (r=0.7605, p=0.007). CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor bearing mice suppress CD8+ T cell production of IFNg and migrate to CCL2 more efficiently than CCL7. CONCLUSION CCR2+/CX3CR1+ cells from glioma bearing mice are derived from the bone marrow and represent an immune suppressive population that migrates to CCL2.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2711-2711
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Romano ◽  
...  

Abstract Introduction In some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase 1 (arg1) that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. The aim of this study was to analyze MDSCs and investigate their activity in CML patients. Methods MDSCs were analyzed in peripheral blood (PB) of 20 healthy donors (HD) and 30 CML patients at diagnosis. In 21 patients MDSCs were also measured during TKI treatment. Granulocytic MDSCs (G-MDSCs) were identified as CD11b+CD33+CD14-HLADR- cells, while the monocytic MDSCs (Mo-MDSCs) as CD14+HLADR by cytofluorimetric analysis. Arg1 expression was assessed using real time PCR and Western Blot. Arg activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. Microvesicles (MV) were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results CML patients showed high levels of Mo- and G-MDSCs at diagnosis in comparison to HD (41±8 and 82,5±12,2% respectively for CML vs 9±2,1 and 55±5,3% for HD; p<0.001), while after TKIs therapy both subpopulations decreased, returning to normal values. T-reg (CD4+ CD25high Foxp3+ cells) were also significantly increased in CML patients at diagnosis in respect to HD (9±2% vs 6,1±0,8%, p<0.001) with a significant correlation with the percentage of Gr-MDSCs (r=0,6254; p<0.001). Both in PB and purified granulocytic cells, Arg1 expression showed a 30 fold increase in CML at diagnosis compared to HD (p<0.001) and decreased after therapy. The same data were confirmed by Western Blot analysis. Arg enzymatic activity in granulocytes resulted also increased in CML (n=10) compared to HD (n=10) (p<0.001). The suppressive function of CML G-MDSCs was demonstrated by their ability to inhibit the proliferation of CFSE+ HD T cells (p<0.001). In addition, an increase of Mo-MDSCs in vitro was observed after incubation of HD monocytes with CML sera (29±13%; p<0.0001) or MV (8±2,8%; p<0.05). Conclusions MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. CML granulocytes have high arg1 activity and immunosuppressive activity. Moreover, CML serum as well as CML microvesicles increase the percentage of HD Mo-MDSCs. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103562 ◽  
Author(s):  
Tae Heung Kang ◽  
Jayne Knoff ◽  
Wei-Hsi Yeh ◽  
Benjamin Yang ◽  
Chenguang Wang ◽  
...  

2010 ◽  
Vol 207 (11) ◽  
pp. 2439-2453 ◽  
Author(s):  
Cesar A. Corzo ◽  
Thomas Condamine ◽  
Lily Lu ◽  
Matthew J. Cotter ◽  
Je-In Youn ◽  
...  

Myeloid-derived suppressor cells (MDSCs) are a major component of the immune-suppressive network described in cancer and many other pathological conditions. We demonstrate that although MDSCs from peripheral lymphoid organs and the tumor site share similar phenotype and morphology, these cells display profound functional differences. MDSC from peripheral lymphoid organs suppressed antigen-specific CD8+ T cells but failed to inhibit nonspecific T cell function. In sharp contrast, tumor MDSC suppressed both antigen-specific and nonspecific T cell activity. The tumor microenvironment caused rapid and dramatic up-regulation of arginase I and inducible nitric oxide synthase in MDSC, which was accompanied by down-regulation of nicotinamide adenine dinucleotide phosphate–oxidase and reactive oxygen species in these cells. In contrast to MDSC from the spleen, MDSC from the tumor site rapidly differentiated into macrophages. Exposure of spleen MDSC to hypoxia resulted in the conversion of these cells to nonspecific suppressors and their preferential differentiation to macrophages. Hypoxia-inducible factor (HIF) 1α was found to be primarily responsible for the observed effects of the tumor microenvironment on MDSC differentiation and function. Thus, hypoxia via HIF-1α dramatically alters the function of MDSC in the tumor microenvironment and redirects their differentiation toward tumor-associated macrophages, hence providing a mechanistic link between different myeloid suppressive cells in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document