scholarly journals Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies

2018 ◽  
Vol 215 (7) ◽  
pp. 1913-1928 ◽  
Author(s):  
Azad Saei ◽  
Marta Palafox ◽  
Touati Benoukraf ◽  
Nishi Kumari ◽  
Patrick William Jaynes ◽  
...  

RAF kinase inhibitors are clinically active in patients with BRAF (V600E) mutant melanoma. However, rarely do tumors regress completely, with the majority of responses being short-lived. This is partially mediated through the loss of negative feedback loops after MAPK inhibition and reactivation of upstream signaling. Here, we demonstrate that the deubiquitinating enzyme USP28 functions through a feedback loop to destabilize RAF family members. Loss of USP28 stabilizes BRAF enhancing downstream MAPK activation and promotes resistance to RAF inhibitor therapy in culture and in vivo models. Importantly, we demonstrate that USP28 is deleted in a proportion of melanoma patients and may act as a biomarker for response to BRAF inhibitor therapy in patients. Furthermore, we identify Rigosertib as a possible therapeutic strategy for USP28-depleted tumors. Our results show that loss of USP28 enhances MAPK activity through the stabilization of RAF family members and is a key factor in BRAF inhibitor resistance.

2019 ◽  
Vol 18 (9) ◽  
pp. 1235-1240 ◽  
Author(s):  
Luigi Formisano ◽  
Valerie M. Jansen ◽  
Roberta Marciano ◽  
Roberto Bianco

Lung cancer is the leading cause of cancer-related mortality around the world, despite effective chemotherapeutic agents, the prognosis has remained poor for a long time. The discovery of molecular changes that drive lung cancer has led to a dramatic shift in the therapeutic landscape of this disease. In “in vitro” and “in vivo” models of NSCLC (Non-Small Cell Lung Cancer), angiogenesis blockade has demonstrated an excellent anti-tumor activity, thus, a number of anti-angiogenic drugs have been approved by regulatory authorities for use in clinical practice. Much more interesting is the discovery of EGFR (Epithelial Growth Factor Receptor) mutations that predict sensitivity to the anti-EGFR Tyrosine Kinase Inhibitors (TKIs), a class of drugs that has shown to significantly improve survival when compared with standard chemotherapy in the first-line treatment of metastatic NSCLC. Nevertheless, after an initial response, resistance often occurs and prognosis becomes dismal. Biomolecular studies on cell line models have led to the discovery of mutations (e.g., T790M) that confer resistance to anti-EGFR inhibitors. Fortunately, drugs that are able to circumvent this mechanism of resistance have been developed and have been recently approved for clinical use. The discovery of robust intratumor lymphocyte infiltration in NSCLC has paved the way to several strategies able to restore the immune response. Thus, agents interfering with PD-1/PD-L1 (Programmed Death) pathways make up a significant portion of the armamentarium of cancer therapies for NSCLC. In all the above-mentioned situations, the basis of the success in treating NSCLC has started from understanding of the mutational landscape of the tumor.


2019 ◽  
Author(s):  
Geeta Lal

Anaplastic thyroid cancer (ATC) is a rare thyroid malignancy with a nearly uniform poor prognosis. Most patients present with advanced disease, and optimal management requires rapid diagnosis, staging, and involvement of multidisciplinary teams. Treatment may include surgery in patients with resectable disease and adjuvant or neoadjuvant radiotherapy and chemotherapy. Improved understanding of molecular pathogenesis has allowed the assessment of tyrosine kinase inhibitors and other targeted treatments in these patients.  The FDA recently approved the combination of dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) for the treatment of BRAF V600E mutation positive, unresectable or metastatic ATC. This review summarizes the current state-of-the-art concepts in the management of patients with ATC. This review contains 3 figures, 2 tables, and 25 references. Key words: anaplastic thyroid cancer, goals of care discussion, management, surgery, radiotherapy, chemotherapy novel therapies, NCCN and ATA guidelines


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 868
Author(s):  
Florian Drescher ◽  
Patricia Juárez ◽  
Danna L. Arellano ◽  
Nicolás Serafín-Higuera ◽  
Felipe Olvera-Rodriguez ◽  
...  

Breast cancer (BCa) cells disseminating to the bone can remain dormant and resistant to treatments for many years until relapsing as bone metastases. The tyrosine kinase receptor TIE2 induces the dormancy of hematopoietic stem cells, and could also induce the dormancy of BCa cells. However, TIE2 is also a target for anti-angiogenic treatments in ongoing clinical trials, and its inhibition could then restart the proliferation of dormant BCa cells in bone. In this study, we used a combination of patient data, in vitro, and in vivo models to investigate the effect of TIE2 in the dormancy of bone metastases. In BCa patients, we found that a higher TIE2 expression is associated with an increased time to metastases and survival. In vitro, TIE2 decreased cell proliferation as it increased the expression of cyclin-dependent kinase inhibitors CDKN1A and CDKN1B and arrested cells in the G0/G1 phase. Expression of TIE2 also increased the resistance to the chemotherapeutic 5-Fluorouracil. In mice, TIE2 expression reduced tumor growth and the formation of osteolytic bone metastasis. Together, these results show that TIE2 is sufficient to induce dormancy in vitro and in vivo, and could be a useful prognostic marker for patients. Our data also suggest being cautious when using TIE2 inhibitors in the clinic, as they could awaken dormant disseminated tumor cells.


2020 ◽  
Vol 20 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Tânia P. Almeida ◽  
Alice A. Ramos ◽  
Joana Ferreira ◽  
Amaya Azqueta ◽  
Eduardo Rocha

: Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and “combination chemotherapy” where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2763-2763 ◽  
Author(s):  
Moran Gotesman ◽  
Thanh-Trang T Vo ◽  
Sharmila Mallya ◽  
Qi Zhang ◽  
Ce Shi ◽  
...  

Abstract Background and Rationale: B-lymphoblastic leukemia (B-ALL) is the most common cancer of childhood. While event-free survival (EFS) exceeds 85% for most patients treated with contemporary therapy, outcomes are very poor for children who relapse, highlighting a need for new treatments. In particular, children with Philadelphia chromosome-like (Ph-like) B-ALL (who lack BCR-ABL1 rearrangement) have high rates of relapse and mortality with conventional chemotherapy. Transcriptional profiling and genomic sequencing of Ph-like ALL specimens have identified a variety of alterations that activate oncogenic kinase signaling, including rearrangements (R) of CRLF2, ABL1, and PDGFRB. Addition of the tyrosine kinase inhibitor (TKI) imatinib to chemotherapy has dramatically improved EFS for patients with BCR-ABL1-rearranged (Ph+) B-ALL, and it is hypothesized that TKI addition to therapy will similarly improve outcomes for patients with Ph-like ALL. Our prior preclinical studies in Ph+ B-ALL demonstrated enhanced efficacy of combining TKIs (imatinib or dasatinib) with mTOR kinase inhibitors (TOR-KIs) (Janes et al., Nature Medicine 2010; Janes et al, Leukemia2013). In the current studies, we hypothesized that dual kinase inhibitor therapy would have superior anti-leukemia cytotoxicity in Ph-like ALL and thus investigated combined TKI and TOR-KI treatment using patient-derived xenograft (PDX) models of childhood Ph-like ALL. Methods: For in vitro studies, viably cryopreserved leukemia cells from established ABL1-R Ph-like ALL PDX models (2 ETV6-ABL1) were incubated with the TKI dasatinib, TOR-KIs, or both TKI + TOR-KI for 72 hours prior to flow cytometric assessment of cellular viability via Annexin V and propidium iodide staining. Two chemically distinct TOR-KIs (MLN0128 or AZD2014) were used to confirm on-target effects. Additional primary ABL1-R or PDGFRB-R Ph-like ALL specimens were plated in methylcellulose without or with inhibitors in colony-forming assays. Phosphoflow cytometry (PFC) analysis of ALL cells incubated with inhibitors was also performed to measure the ability of TKIs and TOR-KIs to inhibit intracellular ABL1 and PI3K/mTOR signaling pathways. For in vivo studies, Ph-like ALL PDX models were treated with dasatinib, the TOR-KI AZD8055, or both drugs via daily oral gavage for 8 days. Human CD19+ ALL was quantified in murine spleens and bone marrow at end of treatment with quantification of cycling cells by EdU incorporation. PFC analysis of murine bone marrow was also performed 2 hours after drugs were dosed, to measure in vivo inhibition of signaling proteins. Results: Combined in vitro treatment with dasatinib and MLN0128 or AZD2014 decreased cellular viability more than inhibitor monotherapy. Similarly, in a set of CRLF2-rearranged samples, mTOR inhibitors augmented killing by the JAK2 inhibitor BBT-594. Incubation of primary ABL1-R or PDGFRB-R ALL cells with both dasatinib and AZD2014 more robustly inhibited colony formation than did inhibitor monotherapy. In in vitro PFC analyses of ABL1-R samples, we observed expected dasatinib-induced inhibition of phosphorylated (p) STAT5. Inhibition of the mTOR substrate pS6 was observed with dasatinib, MLN0128, and AZD2014 with more complete inhibition achieved when dasatinib combined with either MLN0128 or AZD2014. Similarly, in vivo treatment of PDX models with dasatinib and AZD8055 reduced leukemia burden and pS6 signaling more completely than either inhibitor alone. Importantly, dual inhibition decreased the percentage of cycling human ALL cells in murine bone marrow, but preserved cycling in normal mouse bone marrow cells in the same animals. Our data thus provide additional compelling preclinical rationale for combined inhibitor therapy with TKIs and TOR-KIs in Ph-like ALL. Disclosures Weinstock: Novartis: Consultancy, Research Funding. Mullighan:Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Speakers Bureau; Loxo Oncology: Research Funding. Konopleva:Reata Pharmaceuticals: Equity Ownership; Abbvie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Stemline: Consultancy, Research Funding; Eli Lilly: Research Funding; Cellectis: Research Funding; Calithera: Research Funding.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14615-e14615
Author(s):  
C. D. Smith ◽  
L. W. Maines ◽  
Y. Zhuang ◽  
C. L. Green ◽  
S. N. Keller ◽  
...  

e14615 Background: Sphingolipid-metabolizing enzymes control the dynamic balance of important bioactive lipids, including apoptotic ceramide and proliferative sphingosine 1-phosphate (S1P). Several growth factors and inflammatory cytokines promote the cleavage of sphingomyelin and ceramide leading to rapid elevation of S1P levels through the action of sphingosine kinases (SKs). SK1 is oncogenic and is markedly overexpressed in a variety of human cancers, making this enzyme a potential molecular target for cancer therapy. Methods: SK inhibitors were synthesized and evaluated in a variety of cellular and in vivo models. Antitumor activity was assessed in an allogeneic model utilizing murine JC mammary adenocarcinoma cells growing in Balb/c mice, and a xenograft model of human Bxpc pancreatic adenocarcinoma cells growing in scid-mice. Results: The lead SK inhibitors, called ABC294640 and ABC294735, inhibit SK1 and SK2 at low micromolar concentrations, and are nontoxic to rodents at acute doses up to at least 1000 mg/kg (po). ABC294640 is orally-available, and has excellent pharmacokinetics, with serum levels exceeding the effective SK inhibitory concentration for at least 8 hours. Acute- and chronic- toxicology studies indicate that ABC294640 induces a transient minor decrease in the hemotocrit of rats and mice receiving 100 and 250 mg/kg/day; however, this normalizes by 28 days of treatment. No other changes in hematology parameters, or gross or microscopic tissue pathology result from treatment with ABC294640. Oral administration of ABC294640 to mice bearing JC adenocarcinomas results in dose-dependent antitumor activity associated with depletion of S1P levels in the tumors and progressive tumor cell apoptosis. ABC294735 is also orally-active in both JC and Bxpc tumor models, and demonstrates synergistic antitumor activity when combined with cisplatin or gemcitabine. Conclusions: These newly developed SK inhibitors provide orally-available drug candidates for the treatment of pancreatic cancer and other diseases. IND-enabling CMC and toxicology work is currently underway, and an SK inhibitor is expected to enter clinical trials in early 2010. [Table: see text]


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1043
Author(s):  
Aneta Ścieżyńska ◽  
Marta Soszyńska ◽  
Patrycja Szpak ◽  
Natalia Krześniak ◽  
Jacek Malejczyk ◽  
...  

Mesenchymal stem cells have generated a great deal of interest due to their potential use in regenerative medicine and tissue engineering. Examples illustrating their therapeutic value across various in vivo models are demonstrated in the literature. However, some clinical trials have not proved their therapeutic efficacy, showing that translation into clinical practice is considerably more difficult and discrepancies in clinical protocols can be a source of failure. Among the critical factors which play an important role in MSCs’ therapeutic efficiency are the method of preservation of the stem cell viability and various characteristics during their storage and transportation from the GMP production facility to the patient’s bedside. The cell storage medium should be considered a key factor stabilizing the environment and greatly influencing cell viability and potency and therefore the effectiveness of advanced therapy medicinal product (ATMP) based on MSCs. In this review, we summarize data from 826 publications concerning the effect of the most frequently used cell preservation solutions on MSC potential as cell-based therapeutic medicinal products.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2628-2628
Author(s):  
Lauren M Brown ◽  
Hannah Huckstep ◽  
Jarrod Sandow ◽  
Ray C Bartolo ◽  
Nadia Davidson ◽  
...  

Abstract Background: Philadelphia-like acute lymphoblastic leukaemia (Ph-like ALL) is a high-risk subtype of ALL driven by a range of tyrosine kinase and cytokine receptor rearrangements. ABL1-class rearrangements (ABL1, ABL2, CSF1R and PDGFRB) account for 17% of Ph-like ALL cases in children, and are clinically important to identify as they can be therapeutically targeted with tyrosine kinase inhibitors (TKIs). While the p190 BCR-ABL1 fusion is well described, less is known about the function and downstream signalling by rare ABL1 fusions. We identified a rare ABL1 fusion, SFPQ-ABL1, in a paediatric B-ALL patient using RNA-sequencing. This fusion lacks the ABL1 Src-homology-3 (SH3) and part of the SH2 domain, which are retained in BCR-ABL1. Other ABL1 fusions, RCSD1-ABL1 and SNX2-ABL1, have a similar structure. In this work we have utilised phosphoproteomics and Stable Isotope Labelling by Amino Acids in Cell Culture (SILAC), as well as in vitro and in vivo models, to determine differential signalling pathways between SFPQ-ABL1 and BCR-ABL1. Methods: We cloned SFPQ-ABL1 from patient cDNA, and engineered SFPQ-ABL1 and BCR-ABL1 fusions to include or delete the SH2 and SH3 domains. We performed proliferation and viability assays to assess the ability of these fusions to transform Ba/F3 cells and test sensitivity to TKIs. We performed total phosphopeptide and phosphotyrosine enrichments and utilised mass spectrometry to identify the phosphoproteome activated by canonical SFPQ-ABL1 and BCR-ABL1. Over representation analysis was performed on phosphopeptides significantly differing between BCR-ABL and SFPQ-ABL (Log fold change cut-off > 2.5) using the Gene Ontology (GO) knowledge base under the biological process category. Furthermore, we compared the phosphoproteome of canonical SFPQ-ABL1 to SFPQ-ABL1 with the SH2 and SH3 domains reintroduced (SFPQ-ABL1+SH). We have also developed novel mouse models, using syngeneic transplantation, of SFPQ-ABL1 and SNX2-ABL1 driven leukaemia. Results: SFPQ-ABL1 expressing Ba/F3 cells are sensitive to cell death induced by TKIs that block ABL1. Interestingly, while SFPQ-ABL1 and BCR-ABL1 both effectively blocked apoptosis, SFPQ-ABL1 was less able to drive cytokine-independent proliferation. Phosphoproteomic analysis showed that BCR-ABL1 and SFPQ-ABL1 differentially activate downstream signalling pathways, including SH-binding proteins. Hierarchical clustering of phosphopeptides quantified from cells expressing canonical BCR-ABL1, SFPQ-ABL1, and SFPQ-ABL1+SH, demonstrated that BCR-ABL1 and SFPQ-ABL1+SH were more similar to each other than to SFPQ-ABL1. SFPQ-ABL1 expression resulted in phosphorylation of proteins involved in RNA processing, metabolism and splicing, suggesting that SFPQ region of SFPQ-ABL1 also contributes to signalling. Conclusions: In this study, we have utilised phosphoproteomics for the unbiased identification of signalling nodes that are required for the function of different classes of ABL fusions. We have developed novel in vitro and in vivo models to further understand how these fusions function to drive leukaemia. Our data also suggests that ABL1 fusion partners play a role beyond dimerization and transphosphorylation of the kinase domains in oncogenic signalling, but further study is needed to establish the contribution to leukaemogenesis. Establishing signalling pathways that are critical to the function of rare ABL1 fusions may inform clinical approaches to treating this disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongmei Cui ◽  
Qinghui Wang ◽  
Duane D. Miller ◽  
Wei Li

Melanoma is one of the deadliest skin cancers having a five-year survival rate around 15–20%. An overactivated MAPK/AKT pathway is well-established in BRAF mutant melanoma. Vemurafenib (Vem) was the first FDA-approved BRAF inhibitor and gained great clinical success in treating late-stage melanoma. However, most patients develop acquired resistance to Vem within 6–9 months. Therefore, developing a new treatment strategy to overcome Vem-resistance is highly significant. Our previous study reported that the combination of a tubulin inhibitor ABI-274 with Vem showed a significant synergistic effect to sensitize Vem-resistant melanoma both in vitro and in vivo. In the present study, we unveiled that VERU-111, an orally bioavailable inhibitor of α and β tubulin that is under clinical development, is highly potent against Vem-resistant melanoma cells. The combination of Vem and VERU-111 resulted in a dramatically enhanced inhibitory effect on cancer cells in vitro and Vem-resistant melanoma tumor growth in vivo compared with single-agent treatment. Further molecular signaling analyses demonstrated that in addition to ERK/AKT pathway, Skp2 E3 ligase also plays a critical role in Vem-resistant mechanisms. Knockout of Skp2 diminished oncogene AKT expression and contributed to the synergistic inhibitory effect of Vem and VERU-111. Our results indicate a treatment combination of VERU-111 and Vem holds a great promise to overcome Vem-resistance for melanoma patients harboring BRAF (V600E) mutation.


Sign in / Sign up

Export Citation Format

Share Document