scholarly journals NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection

2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Daria Kveštak ◽  
Vanda Juranić Lisnić ◽  
Berislav Lisnić ◽  
Jelena Tomac ◽  
Mijo Golemac ◽  
...  

Congenital human cytomegalovirus (cHCMV) infection of the brain is associated with a wide range of neurocognitive sequelae. Using infection of newborn mice with mouse cytomegalovirus (MCMV) as a reliable model that recapitulates many aspects of cHCMV infection, including disseminated infection, CNS infection, altered neurodevelopment, and sensorineural hearing loss, we have previously shown that mitigation of inflammation prevented alterations in cerebellar development, suggesting that host inflammatory factors are key drivers of neurodevelopmental defects. Here, we show that MCMV infection causes a dramatic increase in the expression of the microglia-derived chemokines CXCL9/CXCL10, which recruit NK and ILC1 cells into the brain in a CXCR3-dependent manner. Surprisingly, brain-infiltrating innate immune cells not only were unable to control virus infection in the brain but also orchestrated pathological inflammatory responses, which lead to delays in cerebellar morphogenesis. Our results identify NK and ILC1 cells as the major mediators of immunopathology in response to virus infection in the developing CNS, which can be prevented by anti–IFN-γ antibodies.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1078
Author(s):  
Fran Krstanović ◽  
William J. Britt ◽  
Stipan Jonjić ◽  
Ilija Brizić

Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.


2018 ◽  
Vol 475 (22) ◽  
pp. 3687-3706 ◽  
Author(s):  
Weibing Dong ◽  
Xin Zhu ◽  
Xuan Zhou ◽  
Ying Yang ◽  
Xin Yan ◽  
...  

Antimicrobial peptides have broad-spectrum killing activities against bacteria, enveloped viruses, fungi and several parasites via cell membrane permeation and exhibit primarily immunomodulatory and anti-infective functions in their interactions with host cells. However, the mechanism underlying their anti-inflammatory activity remains to be elucidated. L-K6, an analog of temporin-1CEb isolated from the skin secretion of Rana chensinensis, has demonstrated a wide range of antimicrobial activities against gram-negative and gram-positive bacteria. In this study, the potent anti-inflammatory mechanism of L-K6 and its analogs in lipopolysaccharide (LPS)-stimulated human macrophage U937 cells were evaluated. We found that L-K6 suppressed the expression of inflammatory factors by two downstream signaling components in the MyD88-dependent pathway, including the mitogen-activated protein kinases (MAPKs) and the NF (nuclear factor)-κB signaling pathway, but its analog L-K5, which had the same amino acid sequence as L-K6 but no Lys residue at the –COOH terminal, only inhibited the phosphorylation of I-κB and NF-κB. Importantly, L-K6 and L-K5 were actively taken up by U937 cells through an independent cell membrane disruption mechanism and were eventually localized to the perinuclear region. The L-K6 uptake process was mediated by endocytosis, but L-K5 was specifically taken up by U937 cells via TLR4 endocytosis. Our results demonstrated that L-K6 can neutralize LPS and diassociate LPS micelles to inhibit LPS from triggering the proinflammatory signaling pathway, and by partially inhibiting inflammatory responses by the intracellular target. However, L-K5 may mainly inhibit proinflammatory responses by intracellular reporters to modulate the NF-κB signaling pathway.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 395 ◽  
Author(s):  
Zi Wang ◽  
Weinan Hao ◽  
Junnan Hu ◽  
Xiaojie Mi ◽  
Ye Han ◽  
...  

Maltol, a food-flavoring agent and Maillard reaction product formed during the processing of red ginseng (Panax ginseng, C.A. Meyer), has been confirmed to exert a hepatoprotective effect in alcohol-induced oxidative damage in mice. However, its beneficial effects on acetaminophen (APAP)-induced hepatotoxicity and the related molecular mechanisms remain unclear. The purpose of this article was to investigate the protective effect and elucidate the mechanisms of action of maltol on APAP-induced liver injury in vivo. Maltol was administered orally at 50 and 100 mg/kg daily for seven consecutive days, then a single intraperitoneal injection of APAP (250 mg/kg) was performed after the final maltol administration. Liver function, oxidative indices, inflammatory factors—including serum alanine and aspartate aminotransferases (ALT and AST), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), liver glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) were measured. Results demonstrated that maltol possessed a protective effect on APAP-induced liver injury. Liver histological changes and Hoechst 33258 staining also provided strong evidence for the protective effect of maltol. Furthermore, a maltol supplement mitigated APAP-induced inflammatory responses by increasing phosphorylated nuclear factor-kappa B (NF-κB), inhibitor kappa B kinase α/β (IKKα/β), and NF-kappa-B inhibitor alpha (IκBα) in NF-κB signal pathways. Immunoblotting results showed that maltol pretreatment downregulated the protein expression levels of the B-cell-lymphoma-2 (Bcl-2) family and caspase and altered the phosphorylation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in a dose-dependent manner. In conclusion, our findings clearly demonstrate that maltol exerts a significant liver protection effect, which may partly be ascribed to its anti-inflammatory and anti-apoptotic action via regulation of the PI3K/Akt signaling pathway.


2008 ◽  
Vol 82 (24) ◽  
pp. 12172-12180 ◽  
Author(s):  
Đurđica Cekinović ◽  
Mijo Golemac ◽  
Ester Pernjak Pugel ◽  
Jelena Tomac ◽  
Luka Čičin-Šain ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) is the most frequent cause of congenital viral infections in humans and frequently leads to long-term central nervous system (CNS) abnormalities that include learning disabilities, microcephaly, and hearing loss. The pathogenesis of the CNS infection has not been fully elucidated and may arise as a result of direct damage of CMV-infected neurons or indirectly secondary to inflammatory response to infection. We used a recently established model of mouse CMV (MCMV) infection in newborn mice to analyze the contribution of humoral immunity to virus clearance from the brain. In brains of MCMV-infected newborn mice treated with immune serum, the titer of infectious virus was reduced below detection limit, whereas in the brains of mice receiving control (nonimmune) serum significant amounts of virus were recovered. Moreover, histopathological and immunohistological analyses revealed significantly less CNS inflammation in mice treated with immune serum. Treatment with MCMV-specific monoclonal antibodies also resulted in the reduction of virus titer in the brain. Recipients of control serum or irrelevant antibodies had more viral foci, marked mononuclear cell infiltrates, and prominent glial nodules in their brains than mice treated with immune serum or MCMV-specific antibodies. In conclusion, our data indicate that virus-specific antibodies have a protective role in the development of CNS pathology in MCMV-infected newborn mice, suggesting that antiviral antibodies may be an important component of protective immunological responses during CMV infection of the developing CNS.


Endocrinology ◽  
2016 ◽  
Vol 157 (8) ◽  
pp. 3140-3148 ◽  
Author(s):  
Kenjiro Muta ◽  
Donald A. Morgan ◽  
Justin L. Grobe ◽  
Curt D. Sigmund ◽  
Kamal Rahmouni

Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1–7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.


Author(s):  
Valentijn Vergote ◽  
Lies Laenen ◽  
Raf Mols ◽  
Patrick Augustijns ◽  
Marc Van Ranst ◽  
...  

We investigated whether chloroquine can prevent hantavirus infection and disease in vitro and in vivo, using the Hantaan virus newborn C57BL/6 mice model and the Syrian hamster model for Andes virus. In vitro antiviral experiments were performed using Vero E6 cells, and Old World and New World hantavirus species. Hantavirus RNA was detected using quantitative RT-PCR. For all hantavirus species tested, results indicate that the IC50 of chloroquine (mean 10.2 ± 1.43 μM) is significantly lower than the CC50 (mean 260 ± 2.52 μM) yielding an overall selectivity index of 25.5. We also investigated the potential of chloroquine to prevent death in newborn mice after Hantaan virus infection and its antiviral effect in the hantavirus Syrian hamster model. For this purpose, C57Bl/6 mother mice were treated subcutaneously with daily doses of chloroquine. Subsequently, 1-day-old suckling mice were inoculated intracerebrally with 5 x 102 Hantaan virus particles. In litters of untreated mothers, none of the pups survived challenge. The highest survival rate (72.7% of pups) was found when mother mice were administered a concentration of 10 mg/kg chloroquine. Survival rates declined in a dose-dependent manner, with 47.6% survival when treated with 5 mg/kg chloroquine, and 4.2% when treated with 1 mg/kg chloroquine. Assessing the antiviral therapeutic and prophylactic effect of chloroquine in the Syrian hamster model was done using two different administration routes (intraperitoneally and subcutaneously using an osmotic pump system). Evaluating the prophylactic effect, a delay in onset of disease was noted and for the osmotic pump, 60% survival was observed. Our results show that chloroquine can be highly effective against Hantaan virus infection in newborn mice and against Andes virus in Syrian hamsters.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 804 ◽  
Author(s):  
Haidong Wei ◽  
Chun Li ◽  
Hongwei Xin ◽  
Shuang Li ◽  
Yanju Bi ◽  
...  

Keel fracture has negative effects on the health and welfare of laying hens. We investigated effects of keel fracture on stress, inflammation, and the orexin system in laying hens. Ninety 17-week-old Lohmann white laying hens were palpated and euthanatized at 42 weeks old, and marked as normal keel (NK)/fractured keel (FK) from absence/presence of keel fracture. Serum, brain, liver, and abdominal-muscle samples were collected from 10 NK and 10 FK hens to determine the stress and inflammatory responses and the activity of orexin systems by corticosterone content, expression of heat shock proteins (TNF-α 60, 70, 90), and inflammatory factors (tumor necrosis factor (TNF)-α, nuclear factor-kappa Bp65 (NF-κBp65), inducible nitric oxide synthase (iNOS), prostaglandin E synthases (PTGEs), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β)), orexin (ORX), and orexin-receptor 1/2 (ORXR1/ORXR2). The FK hens had higher serum corticosterone content, Hsps, and inflammatory factor mRNA expression levels than NK hens, although levels of iNOS in the liver and TNF-α in the muscle were similar. Protein levels of Hsp70 and Hsp90 in the brain and liver, iNOS and COX-2 in the liver, NF-κBp65, iNOS, and COX-2 in the brain of FK hens were increased compared with NK hens. Furthermore, FK hens had lower mRNA expression of ORX, ORXR1, and ORXR2 than NK hens. Therefore, keel fracture causes stress and inflammation, and inhibits the expression of the orexin system in laying hens.


2021 ◽  
Vol 22 (16) ◽  
pp. 8860
Author(s):  
Nataly Sanhueza ◽  
Ricardo Fuentes ◽  
Andrea Aguilar ◽  
Beatriz Carnicero ◽  
Karina Vega ◽  
...  

Background: The communication between the brain and the immune system is a cornerstone in animal physiology. This interaction is mediated by immune factors acting in both health and pathogenesis, but it is unclear how these systems molecularly and mechanistically communicate under changing environmental conditions. Behavioural fever is a well-conserved immune response that promotes dramatic changes in gene expression patterns during ectotherms’ thermoregulatory adaptation, including those orchestrating inflammation. However, the molecular regulators activating the inflammatory reflex in ectotherms remain unidentified. Methods: We revisited behavioural fever by providing groups of fish a thermal gradient environment during infection. Our novel experimental setup created temperature ranges in which fish freely moved between different thermal gradients: (1) wide thermoregulatory range; T° = 6.4 °C; and (2) restricted thermoregulatory range; T° = 1.4 °C. The fish behaviour was investigated during 5-days post-viral infection. Blood, spleen, and brain samples were collected to determine plasmatic pro- and anti-inflammatory cytokine levels. To characterize genes’ functioning during behavioural fever, we performed a transcriptomic profiling of the fish spleen. We also measured the activity of neurotransmitters such as norepinephrine and acetylcholine in brain and peripheral tissues. Results: We describe the first set of the neural components that control inflammatory modulation during behavioural fever. We identified a neuro-immune crosstalk as a potential mechanism promoting the fine regulation of inflammation. The development of behavioural fever upon viral infection triggers a robust inflammatory response in vivo, establishing an activation threshold after infection in several organs, including the brain. Thus, temperature shifts strongly impact on neural tissue, specifically on the inflammatory reflex network activation. At the molecular level, behavioural fever causes a significant increase in cholinergic neurotransmitters and their receptors’ activity and key anti-inflammatory factors such as cytokine Il10 and Tgfβ in target tissues. Conclusion: These results reveal a cholinergic neuronal-based mechanism underlying anti-inflammatory responses under induced fever. We performed the first molecular characterization of the behavioural fever response and inflammatory reflex activation in mobile ectotherms, identifying the role of key regulators of these processes. These findings provide genetic entry points for functional studies of the neural–immune adaptation to infection and its protective relevance in ectotherm organisms.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Audrey Inge Schytz Andersen-Civil ◽  
Milla Marleena Leppä ◽  
Stig M. Thamsborg ◽  
Juha-Pekka Salminen ◽  
Andrew R. Williams

AbstractProanthocyanidins (PAC) are dietary compounds that have been extensively studied for beneficial health effects due to their anti-inflammatory properties. However, the structure-function relationships of PAC and their mode-of-action remain obscure. Here, we isolated a wide range of diverse PAC polymer mixtures of high purity from plant material. Polymer size was a key factor in determining the ability of PAC to regulate inflammatory cytokine responses in murine macrophages. PAC polymers with a medium (9.1) mean degree of polymerization (mDP) induced substantial transcriptomic changes, whereas PAC with either low (2.6) or high (12.3) mDP were significantly less active. Short-term oral treatment of mice with PAC modulated gene pathways connected to nutrient metabolism and inflammation in ileal tissue in a polymerization-dependent manner. Mechanistically, the bioactive PAC polymers modulated autophagic flux and inhibited lipopolysaccharide-induced autophagy in macrophages. Collectively, our results highlight the importance of defined structural features in the health-promoting effects of PAC-rich foods.


2017 ◽  
Vol 214 (3) ◽  
pp. 597-607 ◽  
Author(s):  
Li Zhong ◽  
Xiao-Fen Chen ◽  
Tingting Wang ◽  
Zhe Wang ◽  
Chunyan Liao ◽  
...  

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed in microglia in the brain. A soluble form of TREM2 (sTREM2) derived from proteolytic cleavage of the cell surface receptor is increased in the preclinical stages of AD and positively correlates with the amounts of total and phosphorylated tau in the cerebrospinal fluid. However, the physiological and pathological functions of sTREM2 remain unknown. Here, we show that sTREM2 promotes microglial survival in a PI3K/Akt-dependent manner and stimulates the production of inflammatory cytokines depending on NF-κB. Variants of sTREM2 carrying AD risk-associated mutations were less potent in both suppressing apoptosis and triggering inflammatory responses. Importantly, sTREM2 delivered to the hippocampi of both wild-type and Trem2-knockout mice elevated the expression of inflammatory cytokines and induced morphological changes of microglia. Collectively, these data indicate that sTREM2 triggers microglial activation inducing inflammatory responses and promoting survival. This study has implications for the pathogenesis of AD and provides insights into targeting sTREM2 pathway for AD therapy.


Sign in / Sign up

Export Citation Format

Share Document