The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

2017 ◽  
Vol 26 (7) ◽  
pp. 075012 ◽  
Author(s):  
Qianqian Wen ◽  
Yu Wang ◽  
Xinglong Gong
2019 ◽  
Vol 31 (3) ◽  
pp. 377-388 ◽  
Author(s):  
AK Bastola ◽  
M Paudel ◽  
L Li

This article presents the development of line-patterned magnetorheological elastomers via 3D printing and their magnetorheological characterization. Herein, we consider five different patterns of magnetorheological fluid filaments that are printed and encapsulated within the elastomer matrix. The 3D-printed magnetorheological elastomers could represent the conventional isotropic and anisotropic magnetorheological elastomers. First, the effect of patterning the magnetorheological fluid filaments and the effect of change in the direction of the magnetic field is studied for all five patterns. Thereafter, the dynamic properties of 3D-printed magnetorheological elastomers under uniaxial deformation are presented. Magnetorheological effect shown by 3D-printed magnetorheological elastomers was found to be depended on the printed patterns as well as the direction of the applied magnetic field. This result showed that the 3D printing method has the potential to produce anisotropic magnetorheological elastomers or unique configuration of magnetic particles within the elastomer matrix. The dynamic testing showed that the storage modulus of 3D-printed magnetorheological elastomers is increased with increasing frequency and decreased with increasing strain amplitude, which signifies that the 3D-printed hybrid magnetorheological elastomers are also viscoelastic materials and the properties are magnetic field dependent as that of current magnetorheological elastomers.


2012 ◽  
Vol 23 (9) ◽  
pp. 989-994 ◽  
Author(s):  
Holger Böse ◽  
Raman Rabindranath ◽  
Johannes Ehrlich

The actuation behavior of soft silicone-based magnetorheological elastomers in magnetic fields of variable strength was investigated. An inhomogeneous magnetic field gives rise to a reversible actuation effect, which is the result of the competition between magnetic and elastic forces in the material. Magnetorheological elastomers are capable of performing more pronounced deformations than known rigid actuator materials. In this article, the actuation behavior of magnetorheological elastomer ring-shaped bodies in a valve-type device for the control of an air flow is demonstrated. For this purpose, magnetorheological elastomer rings with different Shore hardness were prepared and used in the valve. In addition to the common isotropic magnetorheological elastomer samples, rings with an anisotropic arrangement of the magnetic particles were also prepared. The actuation of these anisotropic magnetorheological elastomers was compared with that of the isotropic samples. Based on simulations, the inhomogeneity of the magnetic field at the magnetorheological elastomer material which is required for the actuation could be strongly affected by the shape in the design of the magnetic yoke. In this study, the closing characteristics of the valve with different yoke shapes and magnetorheological elastomer materials were evaluated by measuring the dependence of the air flow rate on the magnetic field strength. It is demonstrated that the air flow through the valve can be controlled by the current in the field-generating coil, which yields the base for a new type of magnetic valve.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


2019 ◽  
Vol 20 (17) ◽  
pp. 4201 ◽  
Author(s):  
Bica ◽  
Bunoiu

Hybrid magnetorheological elastomers (hMREs) were manufactured based on silicone rubber, silicone oil, carbonyl iron microparticles, graphene nanoparticles and cotton fabric. Using the hMREs, flat capacitors (FCs) were made. Using the installation described in this paper, the electrical capacitance and the coefficient of dielectric losses of the hMREs were measured as a function of the intensity of the magnetic field superimposed over an alternating electric field. From the data obtained, the electrical conductivity, the relative dielectric permittivity and magnetodielectric effects are determined. It is observed that the obtained quantities are significantly influenced by the intensity of the magnetic field and the amount of graphene used.


2008 ◽  
Vol 6 (3) ◽  
pp. 195-197 ◽  
Author(s):  
刘婷 Ting Liu ◽  
陈险峰 Xianfeng Chen ◽  
狄子昀 Ziyun Di ◽  
张军锋 Junfeng Zhang ◽  
李新碗 Xinwan Li ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4031 ◽  
Author(s):  
Cirtoaje ◽  
Petrescu

This article aims to study the impact of carbon nanotube dispersions in liquid crystals. A theoretical model for the system’s dynamics is presented, considering the elastic continuum theory and a planar alignment of liquid crystal molecules on the nanotube’s surface. Experimental calculation of the relaxation times in the magnetic field was made for two cases: when the field was switched on (τon), and when it was switched off (τoff). The results indicate an increase of the relaxation time by about 25% when the magnetic field was switched off, and a smaller increase (about 10%) when the field was switched on, where both were in good agreement with the theoretical values.


The diamagnetism of free electrons in the presence of charged impurity centres which are sufficiently dilute to be non-interacting is calculated to first order in the strength of the potential of the impurity centre. This is done by combining the density-matrix treatment of Landau diamagnetism with the impurity-screening theory o f March & Murray. The susceptibility involves the integrated value of the impurity potential through the crystal, and its first derivative with respect to the magnetic field, B. If the impurity potential is assumed to have a value appropriate to B — 0, then the result for the change in diamagnetic susceptibility on alloying agrees with that of Kohn & Luming (1963). It is shown, however, that the impurity potential is modified in the presence of the magnetic field, and in particular it has angular dependence. The correction to the dia­magnetic susceptibility due to this self-consistency is shown to be significant (25% ). The relevance of the theory to experimental results on dilute alloys is briefly discussed. Finally, as a by-product of the investigation, we have obtained interesting results about the form of the field-dependent dielectric constant.


Sign in / Sign up

Export Citation Format

Share Document