scholarly journals Improvement of product drafting process in drafting devices of the spinning machines with the application of straps

2021 ◽  
Vol 2094 (4) ◽  
pp. 042079
Author(s):  
Rashit Nurboev ◽  
Murkosim Khudayberdiev Anvar Abdullaev ◽  
Okhun Sharofov ◽  
Olima Aripova

Abstract This paper covers the analysis of operation drafting devices of the spinning machines, the technological requirements for the processes of product straightening, product drafting, straightening and parallelization of fibers and the basic theoretical prerequisites. The main geometrical parameters of design of drafting pairs, their interaction, influencing factors as the process of yarn formation after drafting, with the use of straps, are considered. Analysis of the operation of the existing design of drafting devices of technological machines of spinning production has the following disadvantages: low reliability and service life of rubber straps, insufficient strength characteristics and elastic-mechanical properties of the frame element made of technical cotton fabrics. It is necessary to select a pair of straps that meets all the requirements of conditional operation of a pair of straps as a frame element for the upper and lower straps made of thin-layer metal fabric made of metal thread, make adjustments to additional calculations of the design parameters of the drafting devices, taking into account the straps made with a thin metal fabric base.

2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Xinlin Wang ◽  
Lei Lei ◽  
Han Yu

The service life of rails would be remarkably reduced owing to the increase of axle load, which can induce the occurrence of damages such as cracks, collapse, fat edges, etc. Laser cladding, which can enhance the mechanical properties of the rail by creating a coating, has received great attention in the area of the rails due to the attractive advantages such as low input heat, small heat-affected zone, and small deformation. In this paper, recent developments in the microstructural characteristics and mechanical properties of a cladded layer on the rail are reviewed. The method of process optimization for enhancing the properties of a cladded layer are discussed. Finally, the trend of future development is forecasted.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2021 ◽  
Vol 1038 ◽  
pp. 468-479
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Oleg Bezuglov ◽  
Fatih Mehmet Emen

Based on the generalization of research results on the processes of obtaining SiO2 sols using tetraethoxysilane and ethyl silicates, the main factors influencing the elasticity of silica coatings on cotton fabrics and their fire-retardant properties are considered. The possibility of forming covalent bonds between the functional groups of cellulose, gel coating and flame retardant layer is considered, which explains the strong fixation of a thin layer of coating on the fibers of the fabric and improve its fire protection. The use of the developed compositions for fire-retardant elastic coatings based on ethyl silicate allows to increase the time of complete burning of cotton from 30s (untreated fabric) to 600s (treated with binary coating).


Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


2020 ◽  
Vol 198 ◽  
pp. 03013
Author(s):  
Yueshu Li

In recent years, with the development of road traffic in China, road and bridge projects have gradually increased. While the number of projects has increased sharply, construction technology has been greatly improved. The increase in the use of roads and bridges has led to an increase in the probability of cracks on the roads and bridges. Starting from the common types of cracks, this article explains how to effectively ensure the service life of roads and bridges, improve the performance of roads and bridges, avoid road cracks, deal with the cracks, and emphasize the influencing factors of cracks and the corresponding solutions for the reference of relevant personnel.


Sign in / Sign up

Export Citation Format

Share Document