scholarly journals Initial Characterization of Bio-Slurry as Liquid Fertilizer

2021 ◽  
Vol 2117 (1) ◽  
pp. 012007
Author(s):  
M Kusuma ◽  
R Afrianisa

Abstract The demand for organic fertilizers in Indonesia is currently in a critical state. In 2015, it was noticed that the demand of Indonesia for NPK fertilizers reached over 6.5 million tons per year. Given the current state of demand for organic fertilizers in Indonesia, it is imperative to have alternative organic fertilizers that are environmentally friendly and readily available raw materials. One alternative is to use biogas waste that contains essential plant-based nutrients such as NPK (nitrogen, phosphorus, potassium) and additional nutrients such as magnesium (Mg), calcium (Ca) and sulfur (S). The composition of Bio-Slurry after fermentation consists of 25% ± 5 dry matter and 75% ± 5 water. If the dry substance is decomposed, it contains 18- 27% organic matter. The production of liquid organic fertilizers from BioSlurry requires some anaerobic fermentation process lasting 20 days. During the fermentation process it is necessary to additional raw materials such as cow urine, banana stalk and banana peel to add the N, P and K values to BioSlurry. In the initial characterization test, BioSlurry liquid (after pressing) showed an NPK value of <1% and a C-Organic value of 0.04.

2020 ◽  
Vol 981 ◽  
pp. 132-137
Author(s):  
Suharno Rusdi ◽  
Ridwan A. Destian ◽  
Fitratur Rahman ◽  
Achmad Chafidz

Everyday human life cannot be separated from plastic. Almost all objects that are around us are made of plastic. In general, plastics are non-biodegradable, causing environmental problems caused by the increased volume of plastic waste. One way to overcome this is by recycling existing plastic waste. But the use of recycled plastics is very limited and considered inefficient because the process is more difficult and processing is more expensive than buying new plastic raw materials. Another alternative is to use bioplastics or biodegradable plastic. This plastic is more environmentally friendly because it is biodegradable or easily decomposed by microorganisms. Basically, bioplastics can be made from vegetable starches. In this study we will use starch extracted from banana peel waste as a base material for making bioplastics. In this research, glycerin which is used as a bioplastic adhesive or plasticizer will be used. Whether or not bioplastics depend on the resistance to water, the attractiveness of the bioplastics, the ability of the plastic to be decomposed by microorganisms. From this research, it is expected to produce bioplastics with high water resistance and high tensile strength and easy to decompose microorganisms.


2021 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Sherly Novia Yuana Putri ◽  
Wahyu Fajri Syaharani ◽  
Cindy Virgiani Budi Utami ◽  
Dyah Retno Safitri ◽  
Zahra Nur Arum ◽  
...  

<p><em>Nata is an organic food product that has a high fiber content. Nata is a fermented produc</em><em>e </em><em>by <span style="text-decoration: underline;">Acetobacter</span> <span style="text-decoration: underline;">xylinum</span>. </em><em>There is very limited review article that discussed the making process of nata using different starter, raw material, and the length of incubation time in once. So that, </em><em>this </em><em>review</em><em> discusses the comparison of various parameters that affect the fermentation process of nata. This review aims to </em><em>discuss</em><em> the effect of using several types of microorganisms</em><em>,</em><em> different raw materials, and different fermentation time</em><em> on nata production</em><em>. Factors that influence the </em><em>success of nata</em><em> </em><em>fermentation process</em><em> include fermentation time, the addition of ingredients </em><em>(</em><em>sugar, vinegar, and urea</em><em>)</em><em>, the use of hollow caps, avoiding products from shocks, and the use of sterile equipment. The bacteria that can be used for </em><em>making nata</em><em> include <span style="text-decoration: underline;">Acetobacter</span> <span style="text-decoration: underline;">xylinum</span> and <span style="text-decoration: underline;">Acetobacter</span> </em><span style="text-decoration: underline;">sp</span><em>. Several raw materials can be used to make nata, such as coconut water, seaweed, banana peels, tofu water, cassava, and jackfruit straw. The best raw material to make nata from color parameters is seaweed, aroma parameter is jackfruit straw, and taste parameter is cassava. Based on chemical and physical tests, the best raw material for moisture content parameters is seaweed, fiber content parameter is cassava, thickness parameter is banana peel, and yield parameter is coconut water followed by cassava. The length of fermentation affects the thickness and weight of nata, chewier</em><em> texture of nata</em><em>, and the darker</em><em> color of nata</em><em>. The best thickness of nata </em><em>produced </em><em>on the 14<sup>th</sup> day of fermentation was 1.7 cm. The best overall weight of nata on </em><em>produced</em><em> the 10<sup>th</sup> day of fermentation was 600 g/L. The texture of nata was the chewiest in the fermentation time of 14 days</em><em> with</em><em> the value was 72.33 g/5mm. The lowest degree of nata</em><em> </em><em>whiteness </em><em>produced </em><em>on the 14<sup>th</sup> day of fermentation </em><em>with the value </em><em>was 72.307%.</em><em></em></p>


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 137-143 ◽  
Author(s):  
M. Herout ◽  
J. Malaťák ◽  
L. Kučera ◽  
T. Dlabaja

The aim of the work is to determine and analyse concentrations of individual biogas components according to the used raw materials based on plant biomass. The measurement is focused on biogas production depending on input raw materials like maize silage, grass haylage and rye grain. The total amount of plant biomass entering the fermenter during the measurement varies at around 40% w/w, the rest is liquid beef manure. The measured values are statistically evaluated and optimised for the subsequent effective operation of the biogas plant. A biogas plant operating on the principle of wet anaerobic fermentation process is used for the measurement. The biogas production takes place during the wet fermentation process in the mesophile operation at an average temperature of 40&deg;C. The technology of the biogas plant is based on the principle of using two fermenters. It follows from the measured results that maize silage with liquid beef manure in the ratio of 40:60 can produce biogas with a high content of methane; this performance is not stable. At this concentration of input raw material, the formation of undesirable high concentrations of hydrogen sulphide occurs as well. It is shown from the results that the process of biogas production is stabilised by the addition of other components of plant biomass like grass haylage and rye grain and a limitation of the formation of hydrogen sulphide occurs. It follows from the results that the maize silage should form about 80% w/w from the total amount of the plant biomass used.


Author(s):  
Оksana KUBAI

The article examines the current state and dynamics of development of the crop sector of the agricultural sector of Ukraine as one of the leading in the market management system. The products of the industry are extremely important for the national economy, because they are used as raw materials for the light and food industries, consumed in kind, used for animal feed. The production of plant products is associated with the cultivation of plants and the use of a specific and unique resource - land. However, the concentration of agricultural producers on the production of certain crops with high commercial attractiveness and their subsequent export led to a violation of the requirements of rational land use, which led to problems of socio-economic and environmental nature. Against this background, the most acute issue is the further development of the crop sector in terms of balanced use of agricultural land. The article analyzes the current state of development of the crop industry, namely: the dynamics of sown areas of crops and their structure; the analysis of volumes of production of agricultural products in natural indicators in dynamics is carried out; indicators of economic efficiency of agricultural land use are investigated; the state of mineral and organic fertilizers application to agricultural enterprises is determined; a SWOT-analysis of the development of the crop sector of the agricultural sector of Ukraine was conducted. It is established that this state of affairs requires the direction of the vector of agricultural policy in the direction of balancing the economic and environmental component of the use of agricultural land in order to ensure the preservation and reproduction of their fertility. Perspective directions of ensuring the development of the crop industry in the conditions of balanced use of agricultural lands are offered.


2018 ◽  
Vol 164 ◽  
pp. 01039 ◽  
Author(s):  
Roy Hendroko Setyobudi ◽  
Satriyo Krido Wahono ◽  
Praptiningsih Gamawati Adinurani ◽  
Ahmad Wahyudi ◽  
Wahyu Widodo ◽  
...  

The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.


2019 ◽  
Vol 9 (7) ◽  
pp. 1624
Author(s):  
Gulmira B. KEZEMBAYEVA

Lack of land, transportation costs, environmental hazards, loss of valuable components contribute to the use of new methods for recycling. Therefore, the main objective of the work is to develop a methodology for calculating the environmental and economic efficiency of waste treatment technologies. In the work, economic efficiency was defined as the difference between the profit and costs associated with the implementation and implementation of this technology. The basis of the study, the authors took organic waste farms. As a processing technology, multiphase anaerobic fermentation was taken. It is established that the use of this technology contributes to the production of environmentally friendly bio-fertilizers, biologically active solution and biogas. It is determined that the submitted projects are cost-effective. Because it helps to reduce payments for waste disposal and prevent damage to the environment. Also, the use of biomass energy in the agro-industrial complex will provide an additional source of energy based on local renewable raw materials, concentrated organic fertilizers, bioactive solution.


2010 ◽  
pp. 68-89
Author(s):  
. Delovaya Rossiya (Business Russia)

The repot considers the current state of the Russian economy, analyzes the drawbacks of the functioning export-raw materials model of its development. The necessity of its changing on the basis of improving the investment climate on the regional level is noted. Corresponding measures on behalf of federal and regional authorities are formulated as well as the directions of innovation policy aimed at modernizing the Russian economy. The conclusion is made that private non-raw materials business should become the main agent of modernization in our country.


1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


Sign in / Sign up

Export Citation Format

Share Document