Gelation time in the discrete coagulation–fragmentation equations with a bilinear coagulation kernel

2007 ◽  
Vol 40 (39) ◽  
pp. 11749-11764 ◽  
Author(s):  
Éric Brunelle ◽  
Robert G Owens ◽  
Henry J van Roessel
2020 ◽  
Vol 26 (26) ◽  
pp. 3147-3160
Author(s):  
Saeedeh Ahmadipour ◽  
Jaleh Varshosaz ◽  
Batool Hashemibeni ◽  
Leila Safaeian ◽  
Maziar Manshaei

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, POSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young’s modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34±0.44 Mpa and 12.57 N, respectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G4.5H1P0.03PRP10 formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelrite/Hydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1456
Author(s):  
Isabel Matos Oliveira ◽  
Cristiana Gonçalves ◽  
Myeong Eun Shin ◽  
Sumi Lee ◽  
Rui Luis Reis ◽  
...  

Rheumatoid arthritis is a rheumatic disease for which a healing treatment does not presently exist. Silk fibroin has been extensively studied for use in drug delivery systems due to its uniqueness, versatility and strong clinical track record in medicine. However, in general, natural polymeric materials are not mechanically stable enough, and have high rates of biodegradation. Thus, synthetic materials such as gellan gum can be used to produce composite structures with biological signals to promote tissue-specific interactions while providing the desired mechanical properties. In this work, we aimed to produce hydrogels of tyramine-modified gellan gum with silk fibroin (Ty–GG/SF) via horseradish peroxidase (HRP), with encapsulated betamethasone, to improve the biocompatibility and mechanical properties, and further increase therapeutic efficacy to treat rheumatoid arthritis (RA). The Ty–GG/SF hydrogels presented a β-sheet secondary structure, with gelation time around 2–5 min, good resistance to enzymatic degradation, a suitable injectability profile, viscoelastic capacity with a significant solid component and a betamethasone-controlled release profile over time. In vitro studies showed that Ty–GG/SF hydrogels did not produce a deleterious effect on cellular metabolic activity, morphology or proliferation. Furthermore, Ty–GG/SF hydrogels with encapsulated betamethasone revealed greater therapeutic efficacy than the drug applied alone. Therefore, this strategy can provide an improvement in therapeutic efficacy when compared to the traditional use of drugs for the treatment of rheumatoid arthritis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 293
Author(s):  
José M. Acosta-Cuevas ◽  
José González-García ◽  
Mario García-Ramírez ◽  
Víctor H. Pérez-Luna ◽  
Erick Omar Cisneros-López ◽  
...  

Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1395
Author(s):  
Angel Serrano ◽  
Ana M. Borreguero ◽  
Isabel Iglesias ◽  
Anselmo Acosta ◽  
Juan F. Rodríguez ◽  
...  

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day


2021 ◽  
Vol 901 ◽  
pp. 111-116
Author(s):  
Nuttawut Supachawaroj ◽  
Sucharat Limsitthichaikoon

Dry socket disease, a pocket wound caused by the tooth extraction that resulted in severe acute pain which requires a topical analgesic with rapidly pain reduction and suppress the pain until the wound healed. This study aimed to investigate factors affecting gelation temperature and gelation time of lidocaine hydrochloride (LH)-loaded polyelectrolyte complex (PEC) thermosensitivity gel for treating dry socket wound. The first factor was investigated the effects of the ratio of three different types of polymers as chitosan (CS), hyaluronic acid (HA) and poloxamer407 (P407) on the phase transition caused by temperature. The second factor was examined the effects of gel preparation methods. The results showed that increasing concentration of the cationic polymer as CS induced the separation of the solution to gel (sol-to-gel) system due to the charge of CS and the charge of PEC. The ratio of HA:P407 affected the gel forming which high concentration of P407 reduced the gelation temperature while low concentration of HA disturbed the sol-to-gel state causing coagulation. The viscosity, spreadability, and swelling were significantly increased due to the concomitant increased in each polymer, HA and P407. The particle of the formulation observed under microscope was found to be less than 1 µm. Phase inversion from sol-to-gel was found after a min at 23°C. Since gelation temperature of the purposed formula is supposed to form gel below 37°C within a short period of injection. The results of the study indicate the suitable sol-to-gel forming in the appropriate temperature and time which should be used for further investigation in the efficacy and safety.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiao Jiang ◽  
Tat Leung Chan

Purpose The purpose of this study is to investigate the aerosol dynamics of the particle coagulation process using a newly developed weighted fraction Monte Carlo (WFMC) method. Design/methodology/approach The weighted numerical particles are adopted in a similar manner to the multi-Monte Carlo (MMC) method, with the addition of a new fraction function (α). Probabilistic removal is also introduced to maintain a constant number scheme. Findings Three typical cases with constant kernel, free-molecular coagulation kernel and different initial distributions for particle coagulation are simulated and validated. The results show an excellent agreement between the Monte Carlo (MC) method and the corresponding analytical solutions or sectional method results. Further numerical results show that the critical stochastic error in the newly proposed WFMC method is significantly reduced when compared with the traditional MMC method for higher-order moments with only a slight increase in computational cost. The particle size distribution is also found to extend for the larger size regime with the WFMC method, which is traditionally insufficient in the classical direct simulation MC and MMC methods. The effects of different fraction functions on the weight function are also investigated. Originality Value Stochastic error is inevitable in MC simulations of aerosol dynamics. To minimize this critical stochastic error, many algorithms, such as MMC method, have been proposed. However, the weight of the numerical particles is not adjustable. This newly developed algorithm with an adjustable weight of the numerical particles can provide improved stochastic error reduction.


2020 ◽  
Vol 16 (11) ◽  
pp. 1588-1599
Author(s):  
Yiping Li ◽  
Ying Zhu ◽  
Shiyao Luo ◽  
Yue He ◽  
Zhewei Huang ◽  
...  

In this study, we report a new ultrashort peptide (LOC), which forms a redox-sensitive hydrogel after cross-linking with the mild oxidant H2 O2 and used it for tumor-targeted delivery of doxorubicin hydrochloride (DOX). LOC gelled within a few minutes in low-concentration H2 O2 solution. The concentration of H2 O2 significantly altered the gelation time and mechanical properties of the hydrogel. The in vitro micromorphology, secondary structure and rheology characterization of cross-linked hydrogels confirmed the sensitivity and injectability to reducing agent. The cross-linked hydrogel had a strong drug loading capacity, and the drug was released in a GSH concentration-dependent manner, following the Fick diffusion model. In addition, the cross-linked hydrogel showed no cytotoxicity to normal fibroblasts, and no damage to the subcutaneous tissue of mice was observed. In vitro cytotoxicity experiments showed that the DOX-hydrogel system exhibited good anti-cancer efficacy. In vivo studies using 4T1 tumor-bearing mice showed that the DOX-hydrogel system had a significant inhibitory effect on tumors. Therefore, the newly designed redox-sensitive hydrogel can effectively enhance the therapeutic efficacy of DOX and reduce toxicity, making it an attractive biological material.


Author(s):  
L. Saeednia ◽  
A. Usta ◽  
R. Asmatulu

Hydrogels are the promising classes of polymeric drug delivery systems with the controlled release rates. Among them, injectable thermosensitive hydrogels with transition temperature around the body temperature have been wildly considered. Chitosan is one of the most abundant natural polymers, and its biocompatibility and biodegradability makes it a favorable thermosensitive hydrogel that has been attracted much attention in biomedical field worldwide. In this work, a thermosensitive and injectable hydrogel was prepared using chitosan and β-glycerophosphate (β-GP) incorporated with an antibacterial drug (gentamycin). This drug loaded hydrogel is liquid at room temperature, and becomes more solidified gel when heated to the body temperature. Adding β-GP into chitosan and drug molecules and heating the overall solution makes the whole homogenous liquid into gel through a 3D network formation. The gelation time was found to be a function of temperature and concentration of β-GP. This thermosensitive chitosan based hydrogel system was characterized using FTIR and visual observation to determine the chemical structure and morphology. The results confirmed that chitosan/(β-GP) hydrogels could be a promising controlled-release drug delivery system for many deadly diseases.


1977 ◽  
Vol 232 (6) ◽  
pp. H629-H633 ◽  
Author(s):  
L. L. Shen ◽  
J. Hermans ◽  
J. McDonagh ◽  
R. P. McDonagh

The gelation time, opacity, light scattering, and elastic moduli of human fibrin gels clotted in the presence of thrombin, Ancrod, and Reptilase have been compared. At low ionic strength lateral association to thick fibers is observed in all cases. At all ionic strengths thrombin fibrin forms thicker fibers than does Ancrod fibrin. We have demonstrated that an increase in the extent of lateral association is linked to an increase in its velocity and to a decrease in the gelation time. One may consider the removal of fibrinopeptide B to act as a switch: after it is removed fibrin assembles rapidly to thick fibers and gelation is fast; but when this peptide is still attached, there is a slow assembly of thin fibers, and gelation, especially of dilute fibrin, is delayed. We believe that this delay is critical for the complete digestion by plasmin of fibrin formed during in vivo defibrination with Ancrod and of fibrin produced by very small amounts of thrombin (which would still contain fibrinopeptide B), and that slow release of fibrinopeptide B is part of a control mechanism for the regulation of fibrin formation and the prevention of intravascular coagulation.


Sign in / Sign up

Export Citation Format

Share Document