scholarly journals Yeast Aconitase in Two Locations and Two Metabolic Pathways: Seeing Small Amounts Is Believing

2005 ◽  
Vol 16 (9) ◽  
pp. 4163-4171 ◽  
Author(s):  
Neta Regev-Rudzki ◽  
Sharon Karniely ◽  
Nitzan Natani Ben-Haim ◽  
Ophry Pines

The distribution of identical enzymatic activities between different subcellular compartments is a fundamental process of living cells. At present, the Saccharomyces cerevisiae aconitase enzyme has been detected only in mitochondria, where it functions in the tricarboxylic acid (TCA) cycle and is considered a mitochondrial matrix marker. We developed two strategies for physical and functional detection of aconitase in the yeast cytosol: 1) we fused the α peptide of the β-galactosidase enzyme to aconitase and observed α complementation in the cytosol; and 2) we created an ACO1-URA3 hybrid gene, which allowed isolation of strains in which the hybrid protein is exclusively targeted to mitochondria. These strains display a specific phenotype consistent with glyoxylate shunt elimination. Together, our data indicate that yeast aconitase isoenzymes distribute between two distinct subcellular compartments and participate in two separate metabolic pathways; the glyoxylate shunt in the cytosol and the TCA cycle in mitochondria. We maintain that such dual distribution phenomena have a wider occurrence than recorded currently, the reason being that in certain cases there is a small fraction of one of the isoenzymes, in one of the locations, making its detection very difficult. We term this phenomenon of highly uneven isoenzyme distribution “eclipsed distribution.”

2020 ◽  
Vol 117 (22) ◽  
pp. 12394-12401 ◽  
Author(s):  
Aimee D. Potter ◽  
Casey E. Butrico ◽  
Caleb A. Ford ◽  
Jacob M. Curry ◽  
Irina A. Trenary ◽  
...  

The bacterial pathogenStaphylococcus aureusis capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs.S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasiveS. aureusinfection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasiveS. aureusinfection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival ofS. aureusmutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered thatS. aureusrequires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, andS. aureusinstead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition byS. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 762
Author(s):  
Edward V. Prochownik ◽  
Huabo Wang

Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Manu Shree ◽  
Shyam K. Masakapalli

The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C5] xylose or 40% [13C6] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.


1986 ◽  
Vol 250 (3) ◽  
pp. E296-E305 ◽  
Author(s):  
J. K. Kelleher

To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.


2005 ◽  
Vol 187 (9) ◽  
pp. 2967-2973 ◽  
Author(s):  
Cuong Vuong ◽  
Joshua B. Kidder ◽  
Erik R. Jacobson ◽  
Michael Otto ◽  
Richard A. Proctor ◽  
...  

ABSTRACT Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Liying Ruan ◽  
Lu Li ◽  
Dian Zou ◽  
Cong Jiang ◽  
Zhiyou Wen ◽  
...  

Abstract Background S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. Results Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. Conclusions This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.


2020 ◽  
Vol 10 ◽  
Author(s):  
Angela M. Otto

The metabolism of cancer cells is an issue of dealing with fluctuating and limiting levels of nutrients in a precarious microenvironment to ensure their vitality and propagation. Glucose and glutamine are central metabolites for catabolic and anabolic metabolism, which is in the limelight of numerous diagnostic methods and therapeutic targeting. Understanding tumor metabolism in conditions of nutrient depletion is important for such applications and for interpreting the readouts. To exemplify the metabolic network of tumor cells in a model system, the fate 13C6-glucose was tracked in a breast cancer cell line growing in variable low glucose/low glutamine conditions. 13C-glucose-derived metabolites allowed to deduce the engagement of metabolic pathways, namely glycolysis, the TCA-cycle including glutamine and pyruvate anaplerosis, amino acid synthesis (serine, glycine, aspartate, glutamate), gluconeogenesis, and pyruvate replenishment. While the metabolic program did not change, limiting glucose and glutamine supply reduced cellular metabolite levels and enhanced pyruvate recycling as well as pyruvate carboxylation for entry into the TCA-cycle. Otherwise, the same metabolic pathways, including gluconeogenesis, were similarly engaged with physiologically saturating as with limiting glucose and glutamine. Therefore, the metabolic plasticity in precarious nutritional microenvironment does not require metabolic reprogramming, but is based on dynamic changes in metabolite quantity, reaction rates, and directions of the existing metabolic network.


1968 ◽  
Vol 46 (4) ◽  
pp. 453-460 ◽  
Author(s):  
D. Mitchell ◽  
Michael Shaw

Mycelium of the flax rust fungus (Melampsora lini (Pers.) Lév.), grown on flax cotyledons in tissue culture, had a mean [Formula: see text]of 4.1 and a mean C6/C1 ratio of 0.14, measured after 4 hours in radioactive glucose. The C6/C1 ratio increased with time and also after treatment with 10−5 M 2,4-dinitrophenol. The relative labelling of the (80%) ethanol-soluble carbohydrates, and organic and amino acid fractions after incubation with glucose-1-, -2-, or -6-14C also indicated preferential release of C1 as 14CO2. Trehalose (unknown A) was tentatively identified in the carbohydrate fraction and was mildly radioactive after incubation of the mycelium with labelled glucose for 3 hours. The principal radioactive products of glucose in this fraction were two unknowns, B and C, which were tentatively identified as mannitol and arabitol. The labelling patterns were consistent with their formation from intermediates of the pentose phosphate pathway. The distribution of radioactivity derived from glucose in alanine, glutamate, and aspartate also indicated that hexose or triose units formed in the pentose phosphate pathway were converted to pyruvate, which either gave rise to alanine or was further oxidized in the tricarboxylic acid cycle. Incubation with pyruvate-1-, -2-, or -3-14C for 3 hours gave rise to 14CO2 and labelled alanine, glutamate, and aspartate in a manner consistent with the operation of the TCA cycle. Mannitol-1-6-14C was not metabolized to any appreciable extent in this period, but did give rise to 14CO2 and to several unidentified compounds in the carbohydrate fraction.


Sign in / Sign up

Export Citation Format

Share Document