scholarly journals Lysosome Biogenesis Mediated by vps-18 Affects Apoptotic Cell Degradation in Caenorhabditis elegans

2009 ◽  
Vol 20 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Hui Xiao ◽  
Didi Chen ◽  
Zhou Fang ◽  
Jing Xu ◽  
Xiaojuan Sun ◽  
...  

Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.

2014 ◽  
Vol 25 (13) ◽  
pp. 2071-2083 ◽  
Author(s):  
Meng Xu ◽  
Yubing Liu ◽  
Liyuan Zhao ◽  
Qiwen Gan ◽  
Xiaochen Wang ◽  
...  

During programmed cell death, the clearance of apoptotic cells is achieved by their phagocytosis and delivery to lysosomes for destruction in engulfing cells. However, the role of lysosomal proteases in cell corpse destruction is not understood. Here we report the identification of the lysosomal cathepsin CPL-1 as an indispensable protease for apoptotic cell removal in Caenorhabditis elegans. We find that loss of cpl-1 function leads to strong accumulation of germ cell corpses, which results from a failure in degradation rather than engulfment. CPL-1 is expressed in a variety of cell types, including engulfment cells, and its mutation does not affect the maturation of cell corpse–containing phagosomes, including phagosomal recruitment of maturation effectors and phagosome acidification. Of importance, we find that phagosomal recruitment and incorporation of CPL-1 occurs before digestion of cell corpses, which depends on factors required for phagolysosome formation. Using RNA interference, we further examine the role of other candidate lysosomal proteases in cell corpse clearance but find that they do not obviously affect this process. Collectively, these findings establish CPL-1 as the leading lysosomal protease required for elimination of apoptotic cells in C. elegans.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Richard Jäger ◽  
Howard O. Fearnhead

After more than twenty years of research, the molecular events of apoptotic cell death can be succinctly stated; different pathways, activated by diverse signals, increase the activity of proteases called caspases that rapidly and irreversibly dismantle condemned cell by cleaving specific substrates. In this time the ideas that apoptosis protects us from tumourigenesis and that cancer chemotherapy works by inducing apoptosis also emerged. Currently, apoptosis research is shifting away from the intracellular events within the dying cell to focus on the effect of apoptotic cells on surrounding tissues. This is producing counterintuitive data showing that our understanding of the role of apoptosis in tumourigenesis and cancer therapy is too simple, with some interesting and provocative implications. Here, we will consider evidence supporting the idea that dying cells signal their presence to the surrounding tissue and, in doing so, elicit repair and regeneration that compensates for any loss of function caused by cell death. We will discuss evidence suggesting that cancer cell proliferation may be driven by inappropriate or corrupted tissue-repair programmes that are initiated by signals from apoptotic cells and show how this may dramatically modify how we view the role of apoptosis in both tumourigenesis and cancer therapy.


Author(s):  
Claudia Compagnucci ◽  
Kira Martinus ◽  
John Griffin ◽  
Michael J. Depew

Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.


Genetics ◽  
1991 ◽  
Vol 129 (1) ◽  
pp. 79-94 ◽  
Author(s):  
R E Ellis ◽  
D M Jacobson ◽  
H R Horvitz

Abstract After programmed cell death, a cell corpse is engulfed and quickly degraded by a neighboring cell. For degradation to occur, engulfing cells must recognize, phagocytose and digest the corpses of dying cells. Previously, three genes were known to be involved in eliminating cell corpses in the nematode Caenorhabditis elegans: ced-1, ced-2 and nuc-1. We have identified five new genes that play a role in this process: ced-5, ced-6, ced-7, ced-8 and ced-10. Electron microscopic studies reveal that mutations in each of these genes prevent engulfment, indicating that these genes are needed either for the recognition of corpses by other cells or for the initiation of phagocytosis. Based upon our study of double mutants, these genes can be divided into two sets. Animals with mutations in only one of these sets of genes have relatively few unengulfed cell corpses. By contrast, animals with mutations in both sets of genes have many unengulfed corpses. These observations suggest that these two sets of genes are involved in distinct and partially redundant processes that act in the engulfment of cell corpses.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
R.J. Rotello ◽  
P.A. Fernandez ◽  
J. Yuan

We have isolated a group of monoclonal antibodies that specifically recognize either apoptotic or engulfment cells in the interdigit areas of chicken hind limb foot plates, and throughout the embryo. Ten of these antibodies (anti-apogens) detect epitopes on dying cells that colocalize to areas of programmed cell death, characterized by the presence of apoptotic cells and bodies with typical cellular and nuclear morphology. Our results indicate that cells destined to die, or that are in the process of dying, express specific antigens that are not detectable in or on the surface of living cells. The detection of these apoptotic cell antigens in other areas of programmed cell death throughout the chick embryo indicates that different cell types, which form specific tissues and organs, may utilize similar cell death mechanisms. Six of the monoclonal antibodies (antiengulfens) define a class of engulfment cells which contain various numbers of apoptotic cells and/or apoptotic bodies in areas of programmed cell death. The immunostaining pattern of the anti-engulfen R15F is similar to that of an antibody against a common leukocyte antigen, suggesting the participation of cells from the immune system in the removal of apoptotic cell debris. These novel monoclonal antibody markers for apoptotic and engulfment cells will provide new tools to assist the further understanding of developmental programmed cell death in vertebrates.


Author(s):  
Sharad Kumar ◽  
Loretta Dorstyn ◽  
Yoon Lim

Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.


2008 ◽  
Vol 36 (5) ◽  
pp. 813-817 ◽  
Author(s):  
Patricia Boya ◽  
María Angeles Mellén ◽  
Enrique J. de la Rosa

Programmed cell death, together with proliferation and differentiation, is an essential process during the development of the nervous system. During neurogenesis, neurons and glia are generated in large numbers and, subsequently, they die in a process that depends on trophic signalling that refines the cytoarchitecture and connectivity of the nervous system. In addition, programmed cell death also affects proliferating neuroepithelial cells and recently differentiated neuroblasts. Autophagy is a lysosomal degradative pathway that allows the recycling of cell constituents, and seems to be able to play a dual role. It may serve to protect the cell by preventing the accumulation of deleterious products and organelles and supplying energy and amino acids. On the other hand, it has been considered a type of cell death. The role of autophagy during development is little characterized. The retina provides an excellent model system to study autophagy in the context of neural development, and to establish its relationship with proliferation, differentiation and cell death. In the present review, we summarize recent findings showing that autophagy contributes to the development of the nervous system by providing energy for cell corpse removal after physiological cell death, a process associated with retinal neurogenesis.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 237-252
Author(s):  
Asako Sugimoto ◽  
Ayumi Kusano ◽  
Rebecca R Hozak ◽  
W Brent Derry ◽  
Jiangwen Zhu ◽  
...  

Abstract To identify genes involved in programmed cell death (PCD) in Caenorhabditis elegans, we screened a comprehensive set of chromosomal deficiencies for alterations in the pattern of PCD throughout embryonic development. From a set of 58 deficiencies, which collectively remove ∼74% of the genome, four distinct classes were identified. In class I (20 deficiencies), no significant deviation from wild type in the temporal pattern of cell corpses was observed, indicating that much of the genome does not contain zygotic genes that perform conspicuous roles in embryonic PCD. The class II deficiencies (16 deficiencies defining at least 11 distinct genomic regions) led to no or fewer-than-normal cell corpses. Some of these cause premature cell division arrest, probably explaining the diminution in cell corpse number; however, others have little effect on cell proliferation, indicating that the reduced cell corpse number is not a direct result of premature embryonic arrest. In class III (18 deficiencies defining at least 16 unique regions), an excess of cell corpses was observed. The developmental stage at which the extra corpses were observed varied among the class III deficiencies, suggesting the existence of genes that perform temporal-specific functions in PCD. The four deficiencies in class IV (defining at least three unique regions), showed unusually large corpses that were, in some cases, attributable to extremely premature arrest in cell division without a concomitant block in PCD. Deficiencies in this last class suggest that the cell death program does not require normal embryonic cell proliferation to be activated and suggest that while some genes required for cell division might also be required for cell death, others are not. Most of the regions identified by these deficiencies do not contain previously identified zygotic cell death genes. There are, therefore, a substantial number of as yet unidentified genes required for normal PCD in C. elegans.


Author(s):  
Lifang Zhang ◽  
Yu Zhao ◽  
Quanmei Tu ◽  
Xiangyang Xue ◽  
Xueqiong Zhu ◽  
...  

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signaling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and MicroRNAs, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in immune escape of cervical cancer through inhibition of host immune response. creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PD-L1/PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight the cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document