scholarly journals Cell cycle–dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast

2019 ◽  
Vol 30 (8) ◽  
pp. 1020-1036 ◽  
Author(s):  
Prashant K. Mishra ◽  
Gudjon Olafsson ◽  
Lars Boeckmann ◽  
Timothy J. Westlake ◽  
Ziad M. Jowhar ◽  
...  

Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans), associates with kinetochores during mitosis; however, the role of cell cycle–dependent centromeric ( CEN) association of Cdc5 and its substrates that exclusively localize to the kinetochore have not been characterized. Here we report that evolutionarily conserved CEN histone H3 variant, Cse4 (CENP-A in humans), is a substrate of Cdc5, and that the cell cycle–regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated Cse4. The cell cycle–regulated association of Cdc5 with Cse4 is essential for cell viability as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in faithful chromosome segregation.

2021 ◽  
pp. mbc.E21-06-0323
Author(s):  
Prashant K. Mishra ◽  
Henry Wood ◽  
John Stanton ◽  
Wei-Chun Au ◽  
Jessica R. Eisenstatt ◽  
...  

Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN) which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores and defects in chromosome segregation are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase dead variant of Cdc7 ( cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phosphodeficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Andre Gonçalves Prospero ◽  
Lais Pereira Buranello ◽  
Carlos AH Fernandes ◽  
Lucilene Delazari dos Santos ◽  
Guilherme Soares ◽  
...  

Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.


2012 ◽  
Vol 80 (12) ◽  
pp. 4333-4343 ◽  
Author(s):  
Barak Hajaj ◽  
Hasan Yesilkaya ◽  
Rachel Benisty ◽  
Maayan David ◽  
Peter W. Andrew ◽  
...  

ABSTRACTStreptococcus pneumoniaeis an aerotolerant Gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth,S. pneumoniaeproduces high levels of H2O2. SinceS. pneumoniaelacks catalase, the question of how it controls H2O2levels is of critical importance. Thepsalocus encodes an ABC Mn2+-permease complex (psaBCA) and a putative thiol peroxidase,tpxD. This study shows thattpxDencodes a functional thiol peroxidase involved in the adjustment of H2O2homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H2O2efficiently. However,in vivoexperiments revealed that TpxD detoxifies only a fraction of the H2O2generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys58undergoes selective oxidationin vivo, under conditions where H2O2is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesisin vitrowere significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H2O2resulted intpxDupregulation, whilepsaBCAexpression was oppositely affected. However, the challenge of ΔtpxDmutants with H2O2did not affectpsaBCA, implying that TpxD is involved in the regulation of thepsaoperon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H2O2.


2008 ◽  
Vol 19 (3) ◽  
pp. 1007-1021 ◽  
Author(s):  
Nozomi Sugimoto ◽  
Issay Kitabayashi ◽  
Satoko Osano ◽  
Yasutoshi Tatsumi ◽  
Takashi Yugawa ◽  
...  

In mammalian cells, Cdt1 activity is strictly controlled by multiple independent mechanisms, implying that it is central to the regulation of DNA replication during the cell cycle. In fact, unscheduled Cdt1 hyperfunction results in rereplication and/or chromosomal damage. Thus, it is important to understand its function and regulations precisely. We sought to comprehensively identify human Cdt1-binding proteins by a combination of Cdt1 affinity chromatography and liquid chromatography and tandem mass spectrometry analysis. Through this approach, we could newly identify 11 proteins, including subunits of anaphase-promoting complex/cyclosome (APC/C), SNF2H and WSTF, topoisomerase I and IIα, GRWD1/WDR28, nucleophosmin/nucleoplasmin, and importins. In vivo interactions of Cdt1 with APC/CCdh1, SNF2H, topoisomerase I and IIα, and GRWD1/WDR28 were confirmed by coimmunoprecipitation assays. A further focus on APC/CCdh1 indicated that this ubiquitin ligase controls the levels of Cdt1 during the cell cycle via three destruction boxes in the Cdt1 N-terminus. Notably, elimination of these destruction boxes resulted in induction of strong rereplication and chromosomal damage. Thus, in addition to SCFSkp2 and cullin4-based ubiquitin ligases, APC/CCdh1 is a third ubiquitin ligase that plays a crucial role in proteolytic regulation of Cdt1 in mammalian cells.


2004 ◽  
Vol 3 (5) ◽  
pp. 1185-1197 ◽  
Author(s):  
Bidyottam Mittra ◽  
Dan S. Ray

ABSTRACT Crithidia fasciculata cycling sequence binding proteins (CSBP) have been shown to bind with high specificity to sequence elements present in several mRNAs that accumulate periodically during the cell cycle. The first described CSBP has subunits of 35.6 (CSBPA) and 42 kDa (CSBPB). A second distinct binding protein termed CSBP II has been purified from CSBPA null mutant cells, lacking both CSBPA and CSBPB proteins, and contains three major polypeptides with predicted molecular masses of 63, 44.5, and 33 kDa. Polypeptides of identical size were radiolabeled in UV cross-linking assays performed with purified CSBP II and 32P-labeled RNA probes containing six copies of the cycling sequence. The CSBP II binding activity was found to cycle in parallel with target mRNA levels during progression through the cell cycle. We have cloned genes encoding these three CSBP II proteins, termed RBP63, RBP45, and RBP33, and characterized their binding properties. The RBP63 protein is a member of the poly(A) binding protein family. Homologs of RBP45 and RBP33 proteins were found only among the kinetoplastids. Both RBP45 and RBP33 proteins and their homologs have a conserved carboxy-terminal half that contains a PSP1-like domain. All three CSBP II proteins show specificity for binding the wild-type cycling sequence in vitro. RBP45 and RBP33 are phosphoproteins, and RBP45 has been found to bind in vivo specifically to target mRNA containing cycling sequences. The levels of phosphorylation of both RBP45 and RBP33 were found to cycle during the cell cycle.


1997 ◽  
Vol 17 (12) ◽  
pp. 6994-7007 ◽  
Author(s):  
Y Tao ◽  
R F Kassatly ◽  
W D Cress ◽  
J M Horowitz

The product of the retinoblastoma (Rb) susceptibility gene, Rb-1, regulates the activity of a wide variety of transcription factors, such as E2F, in a cell cycle-dependent fashion. E2F is a heterodimeric transcription factor composed of two subunits each encoded by one of two related gene families, denoted E2F and DP. Five E2F genes, E2F-1 through E2F-5, and two DP genes, DP-1 and DP-2, have been isolated from mammals, and heterodimeric complexes of these proteins are expressed in most, if not all, vertebrate cells. It is not yet clear whether E2F/DP complexes regulate overlapping and/or specific cellular genes. Moreover, little is known about whether Rb regulates all or a subset of E2F-dependent genes. Using recombinant E2F, DP, and Rb proteins prepared in baculovirus-infected cells and a repetitive immunoprecipitation-PCR procedure (CASTing), we have identified consensus DNA-binding sites for E2F-1/DP-1, E2F-1/DP-2, E2F-4/DP-1, and E2F-4/DP-2 complexes as well as an Rb/E2F-1/DP-1 trimeric complex. Our data indicate that (i) E2F, DP, and Rb proteins each influence the selection of E2F-binding sites; (ii) E2F sites differ with respect to their intrinsic DNA-bending properties; (iii) E2F/DP complexes induce distinct degrees of DNA bending; and (iv) complex-specific E2F sites selected in vitro function distinctly as regulators of cell cycle-dependent transcription in vivo. These data indicate that the specific sequence of an E2F site may determine its role in transcriptional regulation and suggest that Rb/E2F complexes may regulate subsets of E2F-dependent cellular genes.


Author(s):  
Telesphore Nanbo Gueyo ◽  
Marie Alfrede Mvondo ◽  
Stéphane Zingue ◽  
Marius Trésor Kemegne Sipping ◽  
Larissa Vanelle Kenmogne ◽  
...  

AbstractBackgroundPhytoestrogens are natural compounds known as natural selective estrogen receptor modulators used as alternatives against estrogen-dependent cancers. This study aims to evaluate the antiestrogenic effects of Anthonotha macrophylla, a plant used to treat cancer in Cameroon.MethodsThe estrogenic/antiestrogenic activities of A. macrophylla aqueous extract were evaluated in vitro using MCF-7 cell proliferation assay. Moreover, a classical uterotrophic test was carried out to evaluate the antiestrogenic effects of A. macrophylla in rats. Changes in the uterus, vagina, and mammary glands were used as endpoints of estrogenicity.ResultsAnthonotha macrophylla induced antiestrogenic effects in vitro at all the tested concentrations by inhibiting estradiol-induced MCF-7 cell proliferation (p < 0.001). In vivo, a coadministration of estradiol with A. macrophylla extract led to the decrease of uterine [150 (p < 0.05) and 300 (p < 0.01) mg/kg body weight (BW)] and vaginal [75 (p < 0.01) and 300 (p < 0.05) mg/kg BW] epithelial thickness. In addition, a reduction in the mammary gland acini lumen’s diameter was also observed at 75 and 150 mg/kg. Gas chromatography-time-of-flight-mass spectrometry analysis showed that phenolic acid derivatives are present in A. macrophylla extract, which are well known to be endowed with estrogenic/antiestrogenic properties. The LD50 of A. macrophylla was estimated to be less than 2000 mg/kg.ConclusionsAnthonotha macrophylla aqueous extract has antiestrogenic properties. This could promote more studies to explore its ability to prevent estrogen-dependent cancers.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 243-243 ◽  
Author(s):  
Mei-Juan Tu ◽  
Yu-Zhuo Pan ◽  
Jing-Xin Qiu ◽  
Edward Jae-hoon Kim ◽  
Aiming Yu

243 Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Better understanding of pancreatic cancer biology and identification of new targets are highly warranted. MicroRNAs (miRs or miRNAs) play a critical role in the control of tumor progression via crosstalk with cancer signaling pathways. Our recent studies showed that miR-1291 improved chemosensitivity through targeting of efflux transporter ABCC1. This current study investigated the mechanistic role of miR-1291 in the suppression of pancreatic tumorigenesis. Methods: PANC-1 and AsPC-1 cell lines were stably transfected with miR-1291. Cell cycle status and apoptosis of stable miR-1291-expressing cells were tested against control cells using flow cytometry. Cells were injected subcutaneously into nude mice and tumorigenesis was measured in vivo. Proteomic studies were performed by two-dimensional difference gel electrophoresis, matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis. Computationally predicted miR-1291 targets were assessed by luciferase reporter assay and Western blot. Primary PDAC and control samples were tested for miR-1291 and target gene expression levels. Results: Our data showed that stable miR-1291-expressing PANC-1 and AsPC-1 cells both showed a significantly lower rate of proliferation than the control cells, which was associated with a cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 suppressed the tumorigenesis of PANC-1 cells in mouse models in vivo. Proteomic studies revealed the protein level of several cancer-related genes were downregulated by miR-1291, including a pancreatic tumor promoting protein AGR2 which was reduced ~10-fold. Through computational and experimental studies we further identified that FOXA2, a transcription factor governing AGR2 expression, was a direct target of miR-1291. In addition, we found a significant down-regulation of miR-1291 in a set of PDAC patient tumor samples overexpressing AGR2. Conclusions: These results indicate that miR-1291 suppresses pancreatic tumorigenesis via targeting of FOXA2-AGR regulatory pathway providing new insight supporting development of miR-1291-based therapy for PDAC.


Sign in / Sign up

Export Citation Format

Share Document