scholarly journals Cluster-root bearing Proteaceae species show a competitive advantage over non-cluster root species

Author(s):  
Alex Fajardo ◽  
Frida I Piper

Abstract Background and aims Cluster roots (CRs) constitute a special root adaptation that enables plants to take up nutrients, especially phosphorus (P), from soils with low nutrient availability, including recent volcanic deposits. It is unclear, however, how CR species interact with non-cluster root (NCR) species, and how substrates’ fertility modulates potential interactions. Methods We experimentally assessed the net interaction between CR and NCR species using two substrates of contrasting fertility: nutrient-rich nursery mix and tephra (low P availability). We planted seedlings of two southern South America (SSA) Proteaceae species and two NCR Nothofagus species in pairs (conspecifics and heterospecifics) and as singles. We analysed the effect of seedling neighbours on survival, growth performance (e.g. total biomass and leaf area), and leaf and substrate nutrient concentrations (including manganese [Mn], a proxy for P-acquisition efficiency through CR activity) using the relative interaction index (RII). Key Results After three growing seasons, we found that 1) Proteaceae species had fewer CRs, lower CR biomass, and grew less in the tephra than in the nursery substrate; 2) Nothofagus species did not improve their survival and growth in the presence of Proteaceae species in any substrate; 3) contrary to Nothofagus, Proteaceae species improved their growth more when planted with any neighbour (including conspecifics) than when planted alone, which was accompanied by a significant accretion of leaf P; and 4) the presence of a neighbour increased the final N and P concentrations in the nursery substrate, regardless of species identity. Conclusions CRs provide Proteaceae a competitive advantage over NCR species at the seedling stage, which may have important consequences for species coexistence and community structuring. The investigated SSA Proteaceae, which have not evolved in nutrient-impoverished soils as their relatives in southwestern Australia and South Africa, improve their growth when cultivated in pairs, especially in nutrient-rich substrates.

Biologia ◽  
2012 ◽  
Vol 67 (4) ◽  
Author(s):  
Petr Holub ◽  
Ivan Tůma ◽  
Jaroslav Záhora ◽  
Karel Fiala

AbstractEnhanced nitrogen (N) levels accelerate expansion of Calamagrostis epigejos and Arrhenatherum elatius, highly aggressive expanders displacing original dry acidophilous grassland vegetation in the Podyjí National Park (Czech Republic). We compared the capability of Calamagrostis and Arrhenatherum under control and N enhanced treatments to (i) accumulate N and phosphorus (P) in plant tissues, (ii) remove N and P from above-ground biomass during senescence and (iii) release N and P from plant material during decomposition of fresh formed litter. In control treatment, significantly higher amounts of total biomass and fresh aboveground litter were observed in Calamagrostis than in Arrhenatherum. Contrariwise, nutrient concentrations were significantly higher (11.6–14.3 mg N g−1 and 2.3 mg P g−1) in Arrhenatherum peak aboveground biomass than in Calamagrostis (8.4–10.3 mg N g−1 and 1.6–1.7 mg P g−1). Substantial differences between species were found in resorption of nutrients, mainly P, at the ends of growing seasons. While P concentrations in Arrhenatherum fresh litter were twice and three times higher (1.6–2.5 mg P g−1) than in Calamagrostis (0.7–0.8 mg P g−1), N concentrations were nearly doubled in Arrhenatherum (13.1–15.6 mg N g−1) in comparison with Calamagrostis (7.4–8.7 mg N g−1). Thus, the nutrients (N and mainly P) were retranslocated from the aboveground biomass of Calamagrostis probably more effectively in comparison with Arrhenatherum at the end of the growing season. On the other hand, Arrhenatherum litter was decomposed faster and consequently nutrient release (mainly N and P) was higher in comparison with Calamagrostis which pointed to different growth and nutrient use strategies of studied grass species.


1986 ◽  
Vol 64 (12) ◽  
pp. 2993-2998 ◽  
Author(s):  
Steven F. Oberbauer ◽  
Nasser Sionit ◽  
Steven J. Hastings ◽  
Walter C. Oechel

Three Alaskan tundra species, Carex bigelowii Torr., Betula nana L., and Ledum palustre L., were grown in controlled-environment chambers at two nutrition levels with two concentrations of atmospheric CO2 to assess the interactive effects of these factors on growth, photosynthesis, and tissue nutrient content. Carbon dioxide concentrations were maintained at 350 and 675 μL L−1 under photosynthetic photon flux densities of 450 μmol m−2 s−1 and temperatures of 20:15 °C (light:dark). Nutrient treatments were obtained by watering daily with 1/60- or 1/8- strength Hoagland's solution. Leaf, root, and total biomass were strongly enhanced by nutrient enrichment regardless of the CO2 concentration. In contrast, enriched atmospheric CO2 did not significantly affect plant biomass and there was no interaction between nutrition and CO2 concentration during growth. Leaf photosynthesis was increased by better nutrition in two species but was unchanged by CO2 enrichment during growth in all three species. The effects of nutrient addition and CO2 enrichment on tissue nutrient concentrations were complex and differed among the three species. The data suggest that CO2 enrichment with or without nutrient limitation has little effect on the biomass production of these three tundra species.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2409
Author(s):  
Hamed Alarefee ◽  
Che Fauziah Ishak ◽  
Daljit Singh Karam ◽  
Radziah Othman

Efficient use of co-composted organic manure with biochar is one of the sustainable management practices in an agriculture system to increase soil fertility and crop yield. The objectives of this research are to evaluate the use of co-composted biochar, biochar in formulation with poultry litter (PL), and PL compost on soil properties and maize growth. Organic amendments were applied at 10 Mg ha−1, and synthetic fertilizer was applied at the recommended rate of maize (N: P2O5: K2O at 60:60:40 kg ha−1). The results showed that addition of organic amendment significantly increased the total biomass parameter compared to the control, which ranged from 23.2% to 988.5%. The pure biochar treatment yielded lower biomass than the control by 27.1%, which was attributed to its low nutrient content. Consequently, the application of the co-composted biochar achieved higher plant height and aerial portion, which ranged from 46.86% to 25.74% and 7.8% to 108.2%, respectively, in comparison to the recommended fertilizer rate. In addition, the soil amended with co-composted biochar had a significant increase in soil organic matter and had significantly higher chlorophyll and nutrient concentrations in plants, which increased with an increase in the biochar ratio of the co-composts. This was probably attributed to the release of the nutrients retained during composting, thereby possibly making the co-composted biochar act as a slow-release fertilizer. In conclusion, the addition of organic manure with biochar enhanced the nutrient supply by gradual release in comparison to the mineral fertilizer.


2007 ◽  
Vol 56 (1-6) ◽  
pp. 101-110 ◽  
Author(s):  
Chr. Wehenkel ◽  
F. Bergmann ◽  
H.-R. Gregorius

Abstract Studies on plant communities of various annual species suggest that there are particular biotic interactions among individuals from different species which could be the basis for long-term species coexistence. In the course of a large survey on species-genetic diversity relationships in several forest tree communities, it was found that statistically significant differences exist among isozyme genotype frequencies of conspecific tree groups, which differ only by species identity of their neighbours. Based on a specific measure, the association of the neighbouring species with the genotypes of the target species or that of the genotypes with the neighbouring species was quantified. Since only AAT and HEK of the five analysed enzyme systems differed in their genotype frequencies among several tree groups of the same target species, a potential involvement of their enzymatic function in the observed differences was discussed. The results of this study demonstrate a fine-scale genetic differentiation within single tree species of forest communities, which may be the result of biotic interactions between the genetic structure of a species and the species composition of its community. This observation also suggests the importance of intraspecific genetic variation for interspecific adaptation.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 302
Author(s):  
Miguel A. Quiñones ◽  
Susana Fajardo ◽  
Mercedes Fernández-Pascual ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.


2011 ◽  
Vol 156 (3) ◽  
pp. 1025-1032 ◽  
Author(s):  
Lingyun Cheng ◽  
Bruna Bucciarelli ◽  
Jianbo Shen ◽  
Deborah Allan ◽  
Carroll P. Vance

Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Caroline Blanchard ◽  
Daniel E. Wells ◽  
Jeremy M. Pickens ◽  
David M. Blersch

Decoupled aquaponic systems are gaining popularity as a way to manage water quality in aquaponic systems to suit plant and fish growth independently. Aquaponic systems are known to be deficient in several plant-essential elements, which can be affected by solution pH to either increase or decrease available nutrients. To determine the effect of pH in a decoupled aquaponic system, a study was conducted using aquaculture effluent from tilapia culture tanks at four pH treatments: 5.0, 5.8, 6.5, and 7.0, used to irrigate a cucumber crop. Growth and yield parameters, nutrient content of the irrigation water, and nutrients incorporated into the plant tissue were collected over two growing seasons. pH did not have a practical effect on growth rate, internode length or yield over the two growing seasons. Availability and uptake of several nutrients were affected by pH, but there was no overarching effect that would necessitate its use in commercial systems. Nutrient concentrations in the aquaculture effluent would be considered low compared to hydroponic solutions; however, elemental analysis of leaf tissues was within the recommended ranges. Research into other nutrient sources provided by the system (i.e., solid particles carried with the irrigation water) would provide further information into the nutrient dynamics of this system.


2003 ◽  
Vol 54 (1) ◽  
pp. 27 ◽  
Author(s):  
P. A. Thompson ◽  
A. M. Waite ◽  
K. McMahon

In summer 1997–1998, a bloom of the cyanobacteria Anabaena circinalis (Rabenhorst) and Anabaena spiroides (Klebahn) contaminated the Canning River (Perth, WA), forcing its closure to the public for swimming and fishing. We investigated the major nutrient fluctuations before, during and after the bloom. The river was persistently temperature stratified at least 1 month prior to the bloom. The surface and bottom layers of water had distinctly different nutrient concentrations, which meant that biomass and growth rates of the phytoplankton within each layer were limited by different nutrients. At the peak of the bloom, in the bottom waters growth rates were light limited and biomass was nitrogen limited, whereas in the surface waters biomass was controlled by phosphorus (P) availability and growth rates were probably limited by the lack of dissolved inorganic carbon. Another consequence of stratification was that, at the peak of the bloom (0.25 mg chlorophyll L−1), the mostly buoyant cyanobacteria could not access 83% of the P released from sediments during the summer period of anoxia. In this situation, the injection of oxygenated water, tested as a remediation measure for algal blooms, is likely to exacerbate a bloom by providing more of the limiting nutrient to the surface layer. However, aeration prior to the bloom may reduce P release from the sediments by preventing anoxia.


1990 ◽  
Vol 68 (12) ◽  
pp. 2564-2570 ◽  
Author(s):  
Suzanne Racette ◽  
Isabelle Louis ◽  
John G. Torrey

The term cluster root is used to refer to a dense cluster of determinate lateral roots (rootlets), in preference to the terms proteoid root and proteoid-like root used by other authors. Cluster roots are often formed by the actinorhizal plant Gymnostoma papuanum. In water culture, cluster root formation by G. papuanum was influenced by aeration, phosphorus level, and nitrogen source. Aeration was a critical factor, with nonaerated rooted cuttings having far fewer cluster roots than aerated ones. Phosphorus deficiency was the single nutrient deficiency that led to increased cluster root formation. Seedlings, grown under conditions of either low (0.8 mg∙L−1) or no phosphorus, responded by devoting a greater portion of root growth to the production of cluster roots, with no overall reduction in root growth for 6 weeks. The response to varying phosphorus level was modified by providing nitrogen in different forms. Supplying nitrogen as ammonium resulted in low levels of cluster root formation. Supplying nitrate to nodulated seedlings led to an increase in cluster root formation in comparison with plants that depended solely upon dinitrogen fixation by Frankia. Greatest cluster root formation occurred on plants grown in aerated water cultures supplied with nitrate and with little or no phosphorus. Key words: Gymnostoma papuanum, cluster roots, proteoid roots, phosphorus deficiency.


1986 ◽  
Vol 66 (4) ◽  
pp. 971-976 ◽  
Author(s):  
J. A. CUTCLIFFE

The effects of preplant soil applications of B, Mo and dolomitic limestone on yields and leaf tissue nutrient concentrations of Rally peas were investigated at five locations with initial soil pH levels of 5.1–5.9. Experiments were conducted for two consecutive growing seasons at each location. All treatments were preplant incorporated in a 2 × 2 × 2 factorial design with five replicates. Yields of shelled peas, adjusted to tenderometer 100, varied between experiments from 1.1 to 4.8 × 103 kg ha−1 and were not generally affected by B, Mo or lime at application rates of 2.0, 0.25 and 10 000 kg ha−1, respectively. Also, the micronutrient and lime treatments had no significant effects on germination, vine length, pea/vine ratio or maturity. Leaf tissue B, Mo and Mg concentrations were increased by the applications of B, Mo and dolomitic limestone, respectively. However, leaf tissue Ca concentration was not affected by the lime treatment. The results indicate that leaf tissue concentrations of 16–74 μg g−1 B, 0.04–1.34 μg g−1 Mo and 0.23–0.55% Mg were within the sufficiency range.Key words: Peas, boron, molybdenum, dolomitic limestone, yield, leaf tissue concentration


Sign in / Sign up

Export Citation Format

Share Document