Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors

2018 ◽  
Vol 20 (4) ◽  
pp. 1358-1375 ◽  
Author(s):  
Fernando Carazo ◽  
Juan P Romero ◽  
Angel Rubio

Abstract Alternative splicing (AS) has shown to play a pivotal role in the development of diseases, including cancer. Specifically, all the hallmarks of cancer (angiogenesis, cell immortality, avoiding immune system response, etc.) are found to have a counterpart in aberrant splicing of key genes. Identifying the context-specific regulators of splicing provides valuable information to find new biomarkers, as well as to define alternative therapeutic strategies. The computational models to identify these regulators are not trivial and require three conceptual steps: the detection of AS events, the identification of splicing factors that potentially regulate these events and the contextualization of these pieces of information for a specific experiment. In this work, we review the different algorithmic methodologies developed for each of these tasks. Main weaknesses and strengths of the different steps of the pipeline are discussed. Finally, a case study is detailed to help the reader be aware of the potential and limitations of this computational approach.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 130
Author(s):  
Flavia Zita Francies ◽  
Sheynaz Bassa ◽  
Aristotelis Chatziioannou ◽  
Andreas Martin Kaufmann ◽  
Zodwa Dlamini

Gynaecological cancers are attributed to the second most diagnosed cancers in women after breast cancer. On a global scale, cervical cancer is the fourth most common cancer and the most common cancer in developing countries with rapidly increasing mortality rates. Human papillomavirus (HPV) infection is a major contributor to the disease. HPV infections cause prominent cellular changes including alternative splicing to drive malignant transformation. A fundamental characteristic attributed to cancer is the dysregulation of cellular transcription. Alternative splicing is regulated by several splicing factors and molecular changes in these factors lead to cancer mechanisms such as tumour development and progression and drug resistance. The serine/arginine-rich (SR) proteins and heterogeneous ribonucleoproteins (hnRNPs) have prominent roles in modulating alternative splicing. Evidence shows molecular alteration and expression levels in these splicing factors in cervical cancer. Furthermore, aberrant splicing events in cancer-related genes lead to chemo- and radioresistance. Identifying clinically relevant modifications in alternative splicing events and splicing variants, in cervical cancer, as potential biomarkers for their role in cancer progression and therapy resistance is scrutinised. This review will focus on the molecular mechanisms underlying the aberrant splicing events in cervical cancer that may serve as potential biomarkers for diagnosis, prognosis, and novel drug targets.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Mohamed Abdo Abd Al-Hady ◽  
Amr Ahmed Badr ◽  
Mostafa Abd Al-Azim Mostafa

The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Jose J. G. Marin ◽  
Maria Reviejo ◽  
Meraris Soto ◽  
Elisa Lozano ◽  
Maitane Asensio ◽  
...  

The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
J. Jesús Naveja ◽  
Flavio F. Contreras-Torres ◽  
Andrés Rodríguez-Galván ◽  
Erick Martínez-Lorán

Numerous mathematical and computational models have arisen to study and predict the effects of diverse therapies against cancer (e.g., chemotherapy, immunotherapy, and even therapies under research with oncolytic viruses) but, unfortunately, few efforts have been directed towards development of tumor resection models, the first therapy against cancer. The model hereby presented was stated upon fundamental assumptions to produce a predictor of the clinical outcomes of patients undergoing a tumor resection. It uses ordinary differential equations validated for predicting the immune system response and the tumor growth in oncologic patients. This model could be further extended to a personalized prognosis predictor and tools for improving therapeutic strategies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 652-652
Author(s):  
Sophia Adamia ◽  
Hervé Avet-Loiseau ◽  
Jana Jakubikova ◽  
Suzan Lazo-Kallanian ◽  
John Daley ◽  
...  

Abstract Abstract 652 Long-term survival of patients with acute myeloid leukemia (AML) is poor, and new forms of therapy are needed. Many genetic lesions have been identified and studied, and most patients have chromosome translocations or other mutations that promote self-renewal of leukemic stem cells, block differentiation, enhance growth, and block apoptosis. Only a few of these mutations result in druggable targets (e.g., PML-RARa, Kit, PDGFR, FLT3 for instance). In addition to genetic lesions, epigenetic abnormalities have been shown to be very common in AML, and provide opportunities for novel treatments. Using genome-wide approaches to identify alternative splicing, we have recently shown that AML cells have a high level of aberrantly regulated genome-wide alternative splicing (AS) as a frequent epigenetic event. By comparing samples from 62 AML patients with 10 normal donors (NDs) we identified 428 genes differentially spliced in AML. A list of differentially spliced genes includes 50 oncogenes and 52 tumor suppressor genes, as well as genes encoding proteins involved in cell proliferation and differentiation, and apoptosis. We evaluated splicing event frequency in AML compared to NDs and we observed that on average 527 (range 137–1657) genes were identified as differentially spliced in any given patient, out of 62 analyzed. Also, we found that any given differentially spliced gene, of the 3,108 detected, were spliced on average in 26 (range 1–54) AML patients. Thus, splicing aberrations are highly recurrent in AML patients. To identify the causes of aberrant splicing in AML, we evaluated transcript levels of the 24 major splicing factors (SFs) that are involved in the first and second splicing transesterification reactions. These splicing factors are important proteins involved in spliceosomalassembly. Expression levels of these SFs were evaluated in 20 AML patients exhibiting high levels of AS. Quantitative RT-PCR analysis showed significant (up to 30 fold) upregulation of U2AF2 (P<2.00E-07), PTBP (P=3.00E-04) and SFRS12 (P=0.002) SF transcript levels in AML patient samples compared to CD34+ cells from NDs. In preliminary studies, we also detected elevated expression of U2AF2 and PTBP proteins in several patient samples. These results suggest the intriguing possibility that aberrant splicing in AML may be the result of alterations of these SFs. To test this hypothesis we generated stably transfected HEK293 cell lines overexpressing U2AF2 or PTBP. We have developed a synthetic semi-quantitative splicing assay to evaluate the effects of overexpression of these SFs. We have obtained a minigene cassette of the p53 inducible PIG3 gene based on previous splicing studies. The minigene cassette was cloned between RFP (red fluorescent prtoein) and GFP (green fluorescent prtoein) in such a way that translation of the normally spliced transcript results in expression of RFP and GFP, while aberrant splicing results in the expression of RFP only. Production of a similar minigene cassette that includes exons/introns of a gene that is subjected to aberrant splicing in AML (NOTCH2, FLT3 and CD13) is in progress. In studies, completed so far, with the PIG3 minigene cassette construct transiently transfected into the HEK293 cells lines, overexpression of PTBP increased aberrant splicing of the PIG3 minigene. Similar studies testing the effects of elevated levels of U2AF2 and PTBP on NOTCH2 and other genes misspliced in AML (such as FLT3 and CD13) will be presented. Our results indicate that aberrant splicing could be an important event in AML, and development of an in vitro, synthetic splicing assay will enable us to better understand the underlying causes of this process in AML. Disclosures: No relevant conflicts of interest to declare.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 587 ◽  
Author(s):  
Zakaria Louadi ◽  
Mhaned Oubounyt ◽  
Hilal Tayara ◽  
Kil To Chong

Alternative splicing (AS) is the process of combining different parts of the pre-mRNA to produce diverse transcripts and eventually different protein products from a single gene. In computational biology field, researchers try to understand AS behavior and regulation using computational models known as “Splicing Codes”. The final goal of these algorithms is to make an in-silico prediction of AS outcome from genomic sequence. Here, we develop a deep learning approach, called Deep Splicing Code (DSC), for categorizing the well-studied classes of AS namely alternatively skipped exons, alternative 5’ss, alternative 3’ss, and constitutively spliced exons based only on the sequence of the exon junctions. The proposed approach significantly improves the prediction and the obtained results reveal that constitutive exons have distinguishable local characteristics from alternatively spliced exons. Using the motif visualization technique, we show that the trained models learned to search for competitive alternative splice sites as well as motifs of important splicing factors with high precision. Thus, the proposed approach greatly expands the opportunities to improve alternative splicing modeling. In addition, a web-server for AS events prediction has been developed based on the proposed method and made available at https://home.jbnu.ac.kr/NSCL/dsc.htm.


1992 ◽  
Vol 267 (10) ◽  
pp. 7139-7147
Author(s):  
D.M. Rothstein ◽  
H Saito ◽  
M Streuli ◽  
S.F. Schlossman ◽  
C Morimoto

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Ouyang ◽  
Kaide Xia ◽  
Xue Yang ◽  
Shichao Zhang ◽  
Li Wang ◽  
...  

AbstractAlternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii124-ii124
Author(s):  
Jan Remsik ◽  
Xinran Tong ◽  
Ugur Sener ◽  
Danille Isakov ◽  
Yudan Chi ◽  
...  

Abstract For decades, the central nervous system was considered to be an immune privileged organ with limited access to systemic immunity. However, the leptomeninges, the cerebrospinal fluid (CSF)-filled anatomical structure that protects the brain and spinal cord, represent a relatively immune-rich environment. Despite the presence of immune cells, complications in the CSF, such as infectious meningitis and a neurological development of cancer known as leptomeningeal metastasis, are difficult to treat and are frequently fatal. We show that immune cells entering the CSF are held in an ‘idle’ state that limits their cytotoxic arsenal and antigen presentation machinery. To understand this underappreciated neuroanatomic niche, we used unique mouse models and rare patient samples to characterize its cellular composition and critical signaling events in health and disease at a single-cell resolution. Revealing the mediators of CSF immune response will allow us to re-evaluate current therapeutic protocols and employ rational combinations with immunotherapies, therefore turning the patient’s own immune system into an active weapon against pathogens and cancer.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 923
Author(s):  
Koji Kitamura ◽  
Keisuke Nimura

RNA splicing is a critical step in the maturation of precursor mRNA (pre-mRNA) by removing introns and exons. The combination of inclusion and exclusion of introns and exons in pre-mRNA can generate vast diversity in mature mRNA from a limited number of genes. Cancer cells acquire cancer-specific mechanisms through aberrant splicing regulation to acquire resistance to treatment and to promote malignancy. Splicing regulation involves many factors, such as proteins, non-coding RNAs, and DNA sequences at many steps. Thus, the dysregulation of splicing is caused by many factors, including mutations in RNA splicing factors, aberrant expression levels of RNA splicing factors, small nuclear ribonucleoproteins biogenesis, mutations in snRNA, or genomic sequences that are involved in the regulation of splicing, such as 5’ and 3’ splice sites, branch point site, splicing enhancer/silencer, and changes in the chromatin status that affect the splicing profile. This review focuses on the dysregulation of RNA splicing related to cancer and the associated therapeutic methods.


Sign in / Sign up

Export Citation Format

Share Document