Genetic merit for fertility alters the bovine uterine luminal fluid proteome†

2019 ◽  
Vol 102 (3) ◽  
pp. 730-739 ◽  
Author(s):  
Katrin Gegenfurtner ◽  
Thomas Fröhlich ◽  
Florian Flenkenthaler ◽  
Miwako Kösters ◽  
Sébastien Fritz ◽  
...  

Abstract Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins — lactotransferrin and chromogranin A — were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.

Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 116-130
Author(s):  
Nasser Ghanem ◽  
Dessie Salilew-Wondim ◽  
Michael Hoelker ◽  
Karl Schellander ◽  
Dawit Tesfaye

SummaryThe present study was aimed to investigate differences in molecular signatures in oocytes derived from Holstein-Friesian heifers with different genetic merit for fertility, euthanized during day 0 or day 12 of the estrous cycle. Moreover, association between single nucleotide polymorphisms (SNPs) of ODC1 and STAT3 genes and bull fertility traits was investigated. The gene expression patterns were analyzed using cDNA array and validated with quantitative real-time polymerase chain reaction (PCR). The result revealed that several genes have shown not only to be regulated by fertility merit but also by the day of oocyte recovery during the estrous cycle. The STAT3 gene was found to be upregulated in oocytes recovered from animals with high fertility merit at both day 0 and day 12. Some other genes like PTTG1, ODC1 and TUBA1C were downregulated at day 0 and upregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In contrast, the transcript abundance of TPM3 was upregulated at day 0 and downregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In addition, ODC1 and STAT3 were found to be associated (P < 0.05) with sperm quality traits as well as flow cytometry parameters. Therefore, the expression of several candidate genes including ODC1 and STAT3 was related to the genetic merit of the cow. In addition polymorphisms in these two genes were found to be associated with bull semen quality.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
E. B. Menezes ◽  
A. L. C. Velho ◽  
F. Santos ◽  
T. Dinh ◽  
A. Kaya ◽  
...  

Abstract Background Subfertility decreases the efficiency of the cattle industry because artificial insemination employs spermatozoa from a single bull to inseminate thousands of cows. Variation in bull fertility has been demonstrated even among those animals exhibiting normal sperm numbers, motility, and morphology. Despite advances in research, molecular and cellular mechanisms underlying the causes of low fertility in some bulls have not been fully elucidated. In this study, we investigated the metabolic profile of bull spermatozoa using non-targeted metabolomics. Statistical analysis and bioinformatic tools were employed to evaluate the metabolic profiles high and low fertility groups. Metabolic pathways associated with the sperm metabolome were also reported. Results A total of 22 distinct metabolites were detected in spermatozoa from bulls with high fertility (HF) or low fertility (LF) phenotype. The major metabolite classes of bovine sperm were organic acids/derivatives and fatty acids/conjugates. We demonstrated that the abundance ratios of five sperm metabolites were statistically different between HF and LF groups including gamma-aminobutyric acid (GABA), carbamate, benzoic acid, lactic acid, and palmitic acid. Metabolites with different abundances in HF and LF bulls had also VIP scores of greater than 1.5 and AUC- ROC curves of more than 80%. In addition, four metabolic pathways associated with differential metabolites namely alanine, aspartate and glutamate metabolism, β-alanine metabolism, glycolysis or gluconeogenesis, and pyruvate metabolism were also explored. Conclusions This is the first study aimed at ascertaining the metabolome of spermatozoa from bulls with different fertility phenotype using gas chromatography-mass spectrometry. We identified five metabolites in the two groups of sires and such molecules can be used, in the future, as key indicators of bull fertility.


2018 ◽  
Vol 30 (1) ◽  
pp. 172
Author(s):  
K. Gegenfurtner ◽  
T. Fröhlich ◽  
M. Kösters ◽  
E. O. Riedel ◽  
S. Fritz ◽  
...  

Intensive selection strategies focusing on increased milk yield over several decades has been associated with a decline in fertility in dairy cows. To study the effect of the genetic merit for fertility and the metabolic status of the female on the oocyte, early embryo and the maternal environment, 2 animal models were established. The genetic merit model involved Holstein heifers with a low (LFH) and high fertility (HFH) index and heifers from the Montbéliarde breed (MBD), known to have good reproductive performance. The metabolic model comprised samples from maiden heifers (MH), postpartum lactating cows (Lact), and non-lactating cows (dried off immediately after calving; Dry). A common pool of Day 7 embryos recovered from superovulated and artificially inseminated Holstein heifers were transferred into synchronised recipients (1/recipient) of the above-mentioned animal models and uterine lumen fluid (ULF) of confirmed pregnant animals was recovered on Day 19 post-oestrus. As communication between the conceptus and the uterine environment is crucial for the successful establishment of pregnancy, we analysed uterine luminal fluid of pregnant cows from both models using a holistic proteomic approach. Using nano-liquid chromatography-tandem mass spectrometry analysis combined with a label-free quantification approach, we analysed the uterine luminal fluid from the uterine horn ipsilateral to the corpus luteum (where the conceptus was located in all cases). A total of 2127 proteins were quantified in all samples of both models. Among this set of proteins, 458 were found to differ significantly (P-value < 0.05) in abundance between the groups of the genetic model, and 141 were altered in abundance in the metabolic model. The majority of proteome differences in ULF samples was found comparing HFH to the LFH group (358) and between Dry and Lact cows (70) in the metabolic model. Evaluation of this dataset using bioinformatic tools comprising DAVID GO and gene set enrichment analysis revealed that the affected proteins were predominantly assigned to the terms “translation”, “monosaccharide metabolic process”, “enzyme inhibitor activity”, “lipid binding”, and “response to oxidative stress”. Our study revealed that metabolic status and genetic merit for fertility lead to quantitative molecular differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus. This research was funded by European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 312097 (‘FECUND’).


Author(s):  
J.S. Clark

Agroforests and woodlots offer Northland hill country farmers investment and diversification opportunities. Agroforests have less effect on the "whole farm" financial position than woodlots, especially where a progressive planting regime is adopted and where no further borrowing is required. Establishment and tending costs for agro-forests are lower, and returns come much sooner. The proven opportunity for continued grazing under trees established in this manner, apart from a short post-planting period, further enhances the agroforesty option. Even where there is reluctance on a farmer's part to plant trees on high fertility land, the expected financial returns from agroforests on low and medium fertility land will increase the overall long-term profitability and flexibility of the whole farming operation. Woodlots may be more appropriate on low fertility areas where weed reversion is likely. Joint ventures may be worth considering where farm finances are a limited factor. Keywords: On-farm forestry development, Northland hill country, agroforestry, woodlots, diversification, joint ventures, progressive planting regimes, grazing availability.


2021 ◽  
Vol 22 (1) ◽  
pp. 429
Author(s):  
Luca Bini ◽  
Domitille Schvartz ◽  
Chiara Carnemolla ◽  
Roberta Besio ◽  
Nadia Garibaldi ◽  
...  

Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non–collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Han Wang ◽  
Pornpimol Tipthara ◽  
Lei Zhu ◽  
Suk Yean Poon ◽  
Kai Tang ◽  
...  

Chromatin-associated nonhistone proteins (CHRAPs) are readily collected from the DNaseI digested crude chromatin preparation. In this study, we show that the absolute abundance-based label-free quantitative proteomic analysis fail to identify potential CHRAPs from the CHRAP-prep. This is because that the most-highly abundant cytoplasmic proteins such as ribosomal proteins are not effectively depleted in the CHRAP-prep. Ribosomal proteins remain the top-ranked abundant proteins in the CHRAP-prep. On the other hand, we show that relative abundance-based SILAC-mediated quantitative proteomic analysis is capable of discovering the potential CHRAPs in the CHRAP-prep when compared to the whole-cell-extract. Ribosomal proteins are depleted from the top SILAC ratio-ranked proteins. In contrast, nucleus-localized proteins or potential CHRAPs are enriched in the top SILAC-ranked proteins. Consistent with this, gene-ontology analysis indicates that CHRAP-associated functions such as transcription, regulation of chromatin structures, and DNA replication and repair are significantly overrepresented in the top SILAC-ranked proteins. Some of the novel CHRAPs are confirmed using the traditional method. Notably, phenotypic assessment reveals that the top SILAC-ranked proteins exhibit the high likelihood of requirement for growth fitness under DNA damage stress. Taken together, our results indicate that the SILAC-mediated proteomic approach is capable of determining CHRAPs without prior knowledge.


2021 ◽  
pp. 100653
Author(s):  
Emily A. Groene ◽  
Cyrialis Mutabuzi ◽  
Dickson Chinunje ◽  
Ester Matson Shango ◽  
Shalini Kulasingam ◽  
...  

Populasi ◽  
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Pieter J. Soumokil

It has been argued by many demographers that socio economic development with its associated fundamental changes in the role of women and the value of children is the dominant factor in the transition from high to low fertility. Research in less developed countries has found lower fertility levels in urban population compared to rural population. It was therefore assumed that the modernizing role of urbanlife helped bring about a decline infertility levels.This study in Irian Jaya, however, convincingly shows that fertility of urban women in Irian Jaya is higher than that of rural women. This differential infertility in favour of urban women in Irian Jaya appears to be real and not a result of underreporting of total live births in rural areas.The reasons for lower fertility in the rural areas in IrianJaya remain unknown, and more research is therefore needed. However, this study strongly suggests that the traditional system of swidden agricultyure in Irian Jaya, which places a highvalue on the labour input of women, may play a major role in constraining fertility in rural area of this province. On the other hand, high fertility in urban areas takes place because urbanwomen have their first birth earlier thanwomen inthe rural areas.


2021 ◽  
Author(s):  
Hongwei Chu ◽  
Changqing Wu ◽  
Qun Zhao ◽  
Rui Sun ◽  
Kuo Yang ◽  
...  

Abstract Sorafenib is commonly used to treat advanced human hepatocellular carcinoma (HCC). However, clinical efficacy has been limited by drug resistance. In this study, we used label-free quantitative proteomic analysis to systematically investigate the underlying mechanisms of sorafenib resistance in HCC cells. A total of 1709 proteins were confidently quantified. Among them, 89 were differentially expressed, and highly enriched in the processes of cell-cell adhesion, negative regulation of apoptosis, response to drug and metabolic processes involving in sorafenib resistance. Notably, folate receptor α (FOLR1) was found to be significantly upregulated in resistant HCC cells. In addition, in-vitro studies showed that overexpression of FOLR1 decreased the sensitivity of HCC cells to sorafenib, whereas siRNA-directed knockdown of FOLR1 increased the sensitivity of HCC cells to sorafenib. Immunoprecipitation-mass spectrometry analysis suggested a strong link between FOLR1 and autophagy related proteins. Further biological experiments found that FOLR1-related sorafenib resistance was accompanied by the activation of autophagy, whereas inhibition of autophagy significantly reduced FOLR1-induced cell resistance. These results suggest the driving role of FOLR1 in HCC resistance to sorafenib, which may be exerted through FOLR1-induced autophagy. Therefore, this study may provide new insights into understanding the mechanism of sorafenib resistance.


Sign in / Sign up

Export Citation Format

Share Document