scholarly journals Maternal Fish Consumption in Pregnancy Is Associated with a Bifidobacterium-Dominant Microbiome Profile in Infants

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Meg Simione ◽  
Stephanie G Harshman ◽  
Ines Castro ◽  
Rachel Linnemann ◽  
Brianna Roche ◽  
...  

ABSTRACT National guidelines suggest that pregnant women consume 2–3 servings of fish weekly and often focus exclusively on limiting mercury exposure. We examined if meeting this recommendation in the third trimester of pregnancy was associated with differences in infant fecal microbiota composition and diversity. We used multinomial regression to analyze data from 114 infant–mother dyads. Applying 16S rRNA gene sequencing, we identified 3 infant fecal microbiota profiles: Bifidobacterium dominant, Enterobacter dominant, and Escherichia dominant. We found that 20% of mothers met the recommended fish consumption, and those infants whose mothers met the recommendation were more likely to have a Bifidobacterium-dominant profile than an Escherichia-dominant profile (RR ratio: 4.61; 95% CI: 1.40, 15.15; P = 0.01). In multivariable models, the significant association persisted (P < 0.05). Our findings support the need to expand recommendations focusing on the beneficial effects of fish consumption on the infant fecal microbiota profile.

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marion Borey ◽  
Fany Blanc ◽  
Gaëtan Lemonnier ◽  
Jean-Jacques Leplat ◽  
Deborah Jardet ◽  
...  

AbstractThis study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.


2020 ◽  
Vol 52 (12) ◽  
pp. 1959-1975
Author(s):  
Yu Wang ◽  
Weifan Yao ◽  
Bo Li ◽  
Shiyun Qian ◽  
Binbin Wei ◽  
...  

AbstractGut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 744 ◽  
Author(s):  
Jose Jaimes ◽  
Veronika Jarosova ◽  
Ondrej Vesely ◽  
Chahrazed Mekadim ◽  
Jakub Mrazek ◽  
...  

Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota. These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial composition. Understanding this relationship could be used to positively impact health by phenolic supplementation and thus create favorable colonic conditions. This study explored the effect of six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by 16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels. Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium, and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the relative abundance when compared to the control. An opposite effect to the control was observed for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.


2019 ◽  
Author(s):  
Junli Ma ◽  
Lili Sheng ◽  
Chuchu Xi ◽  
Yu Gu ◽  
Ying Hong ◽  
...  

ABSTRACTGut dysbiosis contributes to the development of various human diseases. There are thousands of publications per year for investigating the role of gut microbiota in development of various diseases. However, emerging evidence has indicated data inconsistency between different studies frequently, but gained very little attention by scientists. There are many factors that can cause data variation and inconsistency during the process of microbiota study, in particular, sample storage conditions and subsequent sequencing process. Here, we systemically evaluated the impacts of six fecal sample storage conditions (including −80 °C, −80 °C with 70% ethanol (ET_-80 °C), 4°C with 70% ethanol (ET_4°C), and three commercial storage reagents including OMNIgene•GUT OMR-200 (GT), MGIEasy (MGIE), and Longsee (LS)), storage periods (1, 2 weeks or 6 months), and sequencing platform on gut microbiome profile using 16S rRNA gene sequencing. Our results suggested that −80°C is acceptable for fecal sample storage, and the addition of 70% ethanol offers some benefits. Meanwhile, we found that samples in ET_4 °Cand GT reagents are comparable, both introduced multi-dimensional variations. The use of MGIE resulted in the least alteration, while the greatest changes were observed in samples stored in LS reagents during the whole experiment. Finally, we also confirmed that variations caused by storage condition were larger than that of storage time and sequencing platform.IMPORTANCEIn the current study, we performed a multi-dimensional evaluation on the variations introduced by types of storage conditions, preservation period and sequencing platform on the basis of data acquired from 16S rRNA gene sequencing. The efficacy of preservation methods was comprehensively evaluated by DNA yield and quality, α and β diversity, relative abundance of the dominant bacteria and functional bacteria associated with SCFAs producing and BAs metabolism. Our results confirmed that variations introduced by storage condition were larger than that of storage periods and sequencing platform. Collectively, our study provided a comprehensive view to the impacts of storage conditions, storage times, and sequencing platform on gut microbial profile.


Author(s):  
Naomi N Lee ◽  
Willie A Bidot ◽  
Aaron C Ericsson ◽  
Craig L Franklin

The gut microbiota (GM) is the sum of hundreds of distinct microbial species that can equal or outnumber their host’ssomatic cells. The GM influences a multitude of physiologic and immunologic processes in the host, and changes in the GM have been shown to alter the phenotypes of animal models. Previous studies using rodents have also shown that the composition of the GM is affected by many factors, including diet, husbandry, housing, and the genetic background of the animals. However, limited information exists about factors that may modulate GM in other laboratory species, such as dogs. We sought to eliminate sporadic Giardia colonization of dogs using fenbendazole (FBZ), an antiprotozoal widely used in biomedical research dog colonies. Concerns that FBZ could have inadvertent effects on the canine GM led us to assess GM over the course of treatment. FBZ (50 mg/kg) was given orally to all dogs in 3 different facilities (n = 19 to 25) for 10 consecutive days. Fecal samples were obtained 2 d before the initiation of treatment, on the last day of treatment, and 2 wk after the completion of treatment. Targeted 16S rRNA gene sequencing was used to analyze fecal microbiota. All dogs were clinically normal throughout the sample collection period. Statistical analyses of data showed significant differences between dogs housed in the 3 different facilities, further emphasizing the effect of housing and husbandry factors on the GM. However,negligible differences were seen between time points, indicating that FBZ did not significantly alter the canine GM. Comparison of the GM of Giardia lamblia positive and negative dogs revealed no significant difference between the 2 groups. These findings suggest that FBZ can be used therapeutically in dogs with minimal impact on the GM. Furthermore, the presence ofG. lamblia in clinically normal animals may not be sufficient to influence the normal canine microbiota.


2020 ◽  
Author(s):  
Maureen A. Carey ◽  
Gregory L. Medlock ◽  
Masud Alam ◽  
Mamun Kabir ◽  
Md Jashim Uddin ◽  
...  

ABSTRACTBackgroundThe protozoan parasites in the Cryptosporidium genus cause both acute diarrheal disease and subclinical (i.e. non-diarrheal) disease. It is unclear if the microbiota can influence the manifestation of diarrhea during a Cryptosporidium infection.MethodsTo characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal samples was evaluated using 16S rRNA gene sequencing. Additionally, the microbiome composition prior to infection was examined to test whether a preexisting microbiome profile could influence the Cryptosporidium infection phenotype.ResultsFecal microbiome composition was associated with diarrheal symptoms at two timepoints. Megasphaera was significantly less abundant in diarrheal samples when compared to subclinical samples at the time of Cryptosporidium detection (log2(fold change) = -4.3, p=10−10) and prior to infection (log2(fold change) = -2.0, p=10−4). Random forest classification also identified Megasphaera abundance in the pre- and post-exposure microbiota.as predictive of a subclinical infection.ConclusionsMicrobiome composition broadly, and specifically low Megasphaera abundance, was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection. This observation suggests that the gut microenvironment may play a role in determining the severity of a Cryptosporidium infection.SummaryMegasphaera abundance in the stool of Bangladeshi infants is associated with the development of diarrhea upon infection with the Cryptosporidium parasite.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erick Sánchez-Salguero ◽  
Karina Corona-Cervantes ◽  
Hector Armando Guzmán-Aquino ◽  
María Fernanda de la Borbolla-Cruz ◽  
Víctor Contreras-Vargas ◽  
...  

Microbiota acquired during labor and through the first days of life contributes to the newborn’s immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.


2020 ◽  
Author(s):  
Yan Hua ◽  
Heqin cao ◽  
Jiao Wang ◽  
Fengping He ◽  
Guangshun Jiang

Abstract Background: Gut microbes significantly contribute to nutrient digestion and absorption, intestinal health and immunity, and are essential for the survival and environmental adaptation of wild animals. However, there are few studies on the gut microbiota of captive and wild North China leopard (Panthera pardus japonensis). Results: A total of 10 mainly bacterial phyla were identified in the fecal microbiota of North China leopard, Lachnoclostridium (p = 0.003), Peptoclostridium (p = 0.005), Bacteroides (p =0.008), Fusobacterium (p = 0.017) and Collinsella (p = 0.019) were significantly higher than those of wild North China leopard. Distinct differences in the fecal metabolic phenotypes of captive and wild North China leopard were found, such as content of l-methionine, n-acetyl-l-tyrosine, pentadecanoic acid and oleic acid. Differentially abundant gut microbes were associated with fecal metabolites, especially the bacteria in Firmicutes and Bacteroidetes, involved in the metabolism of N-acetyl-L-alanine and D-quinovose.Conclusion: This study reports for the first time the differences in gut microbiota abundance between captive and wild North China leopard, as well as significant differences in fecal metabolic phenotypes between two groups.


Sign in / Sign up

Export Citation Format

Share Document