scholarly journals A framework for quantifying properties of 3-dimensional movement-based signals

2010 ◽  
Vol 56 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Shaun Td New ◽  
Richard A Peters

Abstract Understanding how signal properties are optimized for the reliable transmission of information requires accurate description of the signal in time and space. For movement-based signals where movement is restricted to a single plane, measurements from a single viewpoint can be used to consider a range of viewing positions based on simple geometric calculations. However, considerations of signal properties from a range of viewing positions for movements extending into three-dimensions (3D) are more problematic. We present here a new framework that overcomes this limitation, and enables us to quantify the extent to which movement-based signals are view-specific. To illustrate its application, a Jacky lizard tail flick signal was filmed with synchronized cameras and the position of the tail tip digitized for both recordings. Camera alignment enabled the construction of a 3D display action pattern profile. We analyzed the profile directly and used it to create a detailed 3D animation. In the virtual environment, we were able to film the same signal from multiple viewing positions and using a computational motion analysis algorithm (gradient detector model) to measure local image velocity in order to predict view dependent differences in signal properties. This approach will enable consideration of a range of questions concerning movement-based signal design and evolution that were previously out of reach.

2021 ◽  
Vol 30 ◽  
pp. S182-S183
Author(s):  
A. Ferkh ◽  
L. Stefani ◽  
S. Trivedi ◽  
P. Brown ◽  
M. Altman ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 134-139
Author(s):  
Rizky Arman ◽  
Yovial Mahyoedin ◽  
Yovial Mahyoedin

AbstrakAKinematika dan dinamika mesin melibatkan desain mesin atas dasar kebutuhan gerak mereka. Kombinasi bagian yang saling berhubungan memiliki gerakan yang pasti dan mampu melakukan pekerjaan yang berguna dapat disebut mesin. Mekanisme adalah komponen dari mesin yang terdiri dari dua atau lebih badan diatur sedemikian rupa sehingga gerakan satu memaksa gerakan yang lain. Desain kereta listrik otomotif (sejenis mesin) sangat  ditentukan oleh beberapa mekanisme, termasuk hubungan slider-engkol, cam dan follower hubungan, dan kereta gigi. Banyak mekanisme yang melibatkan gerak planar, gerak dalam satu pesawat atau di aset bidang sejajar. Kasus yang lebih umum, gerak spasial, berlaku untuk mekanisme di mana gerakan harus dijelaskan dalam tiga dimensi. Analisis kinematika dilakukan di bawah grafis pada umumnya, seperti metode poligon yang menangkap mekanisme dalam satu saat. Cara alternatif lain untuk masalah ini adalah melibatkan metode matematika. Solusi ini memberikan cara yang akurat dan tercepat karena didukung oleh teknologi komputer. Tujuan dari proyek ini adalah untuk menentukan rumus untuk posisi, kecepatan, dan pernyataan percepatan mesin gergaji dengan menggunakan Mathlab. Kata kunci: mekanisme, gerak (posisi, kecepatan dan percepatan), metode poligon AbstractKinematics and dynamics of machinery involve the design of machines on the basis of their motion requirements. A combination of interrelated parts having definite motions and capable of performing useful work may be called a machine. A mechanism is a component of a machine consisting of two or more bodies arranged so that the motion of one compels the motion of the others. The design of an automotive power train (a type of machine) is concerned with several mechanism, including slider-crank linkages, cam and follower linkages, and gear trains. Many mechanisms undergo planar motion, motion in a single plane or in asset of parallel planes. The more general case, spatial motion, applies to mechanism in which the motion must be described in three dimensions. Kinematics analysis is done under graphically in general, such as polygon method which capture the mechanism in one moment. Another way to alternate this problem is involve any mathematical method. This solution gave the accurate and fastest way because supported by computer technology. The aim of this project is to determine the formula for position, velocity, and acceleration statement of the sawing machine by using Mathlab.Keywords: mechanism, motion (position, velocity and acceleration), polygon method


2001 ◽  
Vol 92 (1) ◽  
pp. 223-233
Author(s):  
D. P. McCabe ◽  
D. I. Ben-Tovim ◽  
M. K. Walker ◽  
D. Pomeroy

Do the mental Images of 3-dimensional objects recreate the depth characteristics of the original objects' This investigation of the characteristics of mental images utilized a novel boundary-detection task that required participants to relate a pair of crosses to the boundary of an image mentally projected onto a computer screen. 48 female participants with body attitudes within expected normal range were asked to image their own body and a familiar object from the front and the side. When the visual mental image was derived purely from long-term memory, accuracy was better than chance for the front (64%) and side (63%) of the body and also for the front (55%) and side (68%) of the familiar nonbody object. This suggests that mental images containing depth and spatial information may be generated from information held in long-term memory. Pictorial exposure to views of the front or side of the objects was used to investigate the representations from which this 3-dimensional shape and size information is derived. The results are discussed in terms of three possible representational formats and argue that a front-view 2½-dimensional representation mediates the transfer of information from long-term memory when depth information about the body is required.


1998 ◽  
Vol 4 (S2) ◽  
pp. 16-17
Author(s):  
David Scharf ◽  
Jacob Wilbrink ◽  
John A. Hunt

A stop-frame animation system has been developed for producing high-resolution, color and stereo motion picture animation sequences. The first of these sequences can be seen in the recently released IMAX 3D movies, “Four Million House Guests” a.k.a. “The Hidden Dimension”. IMAX movies have long been known for their breathtaking special effects that seem incredibly realistic because of the large projection screen (about 7 stories high) which is close to the entire audience, high resolution, and powerful audio effects. IMAX 3D is an extention to the traditional format that allows the audience to see three dimensional special effects with the aid of electronically shuttered viewing glasses. IMAX movies are an ideal medium to demonstrate the high resolution digital images that are possible with the SEM.The goal of the SEM movie project was to produce movie sequences where viewers feels like they are flying smoothly through micro-space past microscopic creatures and objects in three dimensions and in color.


2017 ◽  
Vol 73 (8) ◽  
pp. 600-608 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units areM3+O6octahedra (M= Al, Ga, In) that are connectedviaone H2AsO4−and two H2As2O72−groups into chains, and furtherviaH2As2O72−groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak-to-medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72−groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak-to-medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4−and H2As2O72−groups.


2019 ◽  
Vol 88 (1) ◽  
pp. 1 ◽  
Author(s):  
Igor V. Ukrainets ◽  
Lidiya A. Petrushova ◽  
Andrii I. Fedosov ◽  
Natali I. Voloshchuk ◽  
Pavlo S. Bondarenko ◽  
...  

In order to study polymorphic modifications of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide, which is of interest as a promising analgesic, its three colorless crystal forms with different habitus have been obtained: sticks of ethyl acetate, plates of meta-xylene and blocks of ortho-xylene. However, the X-ray diffraction analysis has shown that all the forms studied have the identical molecular and crystal structure in spite of such significant differences in appearance. Moreover, pharmacological tests have revealed significant differences in the analgesic activity in these samples (a total of five experimental models were used: “acetic-acid-induced writhing”, “hot plate”, “thermal irritation of the tail tip” (tail-flick), “tail electric stimulation” and “neuropathic pain”), acute toxicity and the ability to cause gastric damage. As a result, only the plate crystal form of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide is recommended for further studies. Thus, it has been proven that the habitus of crystals is an important characteristic of the drug substance and is able to have a noticeable effect on its biological properties. Changes in habitus should be considered as a guide to the mandatory verification of at least the basic pharmacological parameters of the new form regardless of whether the molecular and crystal structure changes.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 903-907 ◽  
Author(s):  
Benjamin White ◽  
Balan Nair ◽  
Alvin Bayliss

We give an explanation of the phenomenon, sometimes observed in exploration seismology, of anomalously large amplitudes which seem inconsistent with the traveltime curves when the data are interpreted as resulting from reflections from smooth interfaces of piece‐wise homogeneous media. Monte Carlo simulations illustrate how this phenomenon can occur when the homogeneous media have small, smooth, random velocity fluctuations which vary on a length scale which is large compared with a wavelength but small compared with the propagation distance. Synthetic gathers of reflections from a single plane‐stratified layer with and without the random lateral inhomogeneities produce an amplitude anomaly which is related to the random occurrence of a caustic; limit theorems for stochastic differential equations provide a theory. Theoretical curves, giving the probability of first occurrence of this phenomenon along a ray as a function of propagation distance (for plane waves and for point and line sources in two and three dimensions) are qualitatively similar: they have an initial flat portion where amplitude anomalies are very unlikely, rise to a peak at the distance most likely for first occurrence, and decay exponentially to zero, thus predicting that the phenomenon will occur at some finite distance with probability one.


2013 ◽  
Vol 765 ◽  
pp. 451-455 ◽  
Author(s):  
Liam Dwyer ◽  
Joseph Robson ◽  
Joao Quinta da Fonseca ◽  
Nicolas Kamp ◽  
Teruo Hashimoto ◽  
...  

Second phase particles in wrought aluminium alloys are crucial in controlling recrystallization and texture. In Al-Mn-Fe-Si (3xxx) alloys, the size, spacing, and distribution of both large constituent particles and small dispersoids are manipulated by heat treatment to obtain the required final microstructure and texture for operations such as can-making. Understanding how these particles evolve as a function of process conditions is thus critical to optimize alloy performance. In this study, a novel 3-dimensional technique involving serial sectioning in the scanning electron microscope (SEM) has been used to analyse the intermetallic particles found in an as-cast and homogenized Al-Mn-Fe-Si alloy. This has allowed an accurate determination of the size and shape of the constituent particles and dispersoids derived from a 3-dimensional dataset. It is demonstrated that a proper consideration of the 3-dimensional microstructure reveals important features that are not obvious from 2-dimensional sections alone.


2016 ◽  
Author(s):  
F. Späth ◽  
A. Behrendt ◽  
S. K. Muppa ◽  
S. Metzendorf ◽  
A. Riede ◽  
...  

Abstract. The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) determines fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and spatial resolution of up to a few tens of meters. We present three case studies which show that this high resolution combined with 2- and 3-dimensional scans allows for new insights in the 3-dimensional structure of the water vapor field in the atmospheric boundary layer (ABL). In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HOPE was part of the project High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2). Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers and its impact on the formation of clouds at the ABL top. The uncertainty of the measured data was assessed by extending a technique, which was formerly applied to vertical time series, to scanning data. Typically, even during daytime, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m−3 (or < 6 %) within the ABL, so that now the performance of an RHI scan from the surface to an elevation angle of 90 degrees becomes possible within 10 min. In summer 2014, the UHOH DIAL participated in the Surface-Atmosphere-Boundary-Layer-Exchange (SABLE) campaign in south-western Germany. Volume scans show the water vapor field in three dimensions. In this case, multiple humidity layers were present. Differences in their heights in different directions can be attributed to different surface elevation. With low elevation scans in the surface layer, the humidity profiles and gradients related to different land use and surface stabilities were also revealed.


Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 99
Author(s):  
Willy Permana Putra ◽  
Widi Indriyani ◽  
Fachrul Pralienka Bani Muhammaduthor ◽  
Damar Nurcahyon

Dalam pengenalan lingkungan sekolah pada siswa baru, umumnya siswa diajak untuk berkeliling sekolah sehingga calon siswa dapat memahami suasana lingkungan sekolah. SMKN 1 INDRAMAYU sendiri masih menggunakan brosur atau spanduk dalam pengenalan sekolah, oleh karena itu bagaimana mengenalkan SMKN 1 INDRAMAYU kepada calon siswa baru tanpa harus mengajak berkeliling. Dari permasalahan tersebut muncul sebuah gagasan untuk membuat aplikasi yang bisa memperkenalkan lingkungan dan memberi informasi serta bisa dijadikan sebagai media promosi SMKN 1 INDRAMAYU yakni menggunakan teknologi virtual reality untuk memvisualisasikan tempat di dunia nyata ke dalam tampilan 3 Dimensi (3D)In introducing the school environment to new students, students are generally invited to tour the school so prospective students can understand the atmosphere of the school environment. SMK 1 INDRAMAYU itself still uses brochures or banners in the introduction of schools, therefore how to introduce SMK 1 INDRAMAYU to prospective new students without having to take a tour. From this problem emerged an idea to create an application that can introduce the environment and provide information and can be used as a promotional medium for SMKN 1 INDRAMAYU, namely using virtual reality technology to visualize places in the real world into a 3 Dimensional (3D) display 


Sign in / Sign up

Export Citation Format

Share Document