P3688Familial recurrent autoimmune myocarditis associated with a truncating nonsense mutation of the desmoplakin gene

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
W Poller ◽  
S Klaassen ◽  
J Haas ◽  
Z Kaya ◽  
H.-C Mochmann ◽  
...  

Abstract Background Arrhythmogenic cardiomyopathy (AC) is an important cause of ventricular arrhythmias in children and young adults. AC is associated with mutation of desmosomal proteins, however, cardiac disease penetrance is incomplete and the clinical course varies widely without recognizable exogenous or epi/genetic co-factors. Importantly, DSP mutation carriers may also display entirely non-cardiac e.g. dermatological phenotypes. Methods and results In two brothers with recurrent fulminant myocarditis, mutation screening of 218 cardiomyopathy-related genes identified a truncating mutation Arg1458* of desmoplakin (DSP). DSP immunhistology unexpectedly revealed complete loss (“knockout”) of DSP protein in endomyocardial biopsies (EMBs), but none of the histological anomalies of AC. Criteria for histological diagnosis of myocarditis were not either fulfilled, and cardiac MRI revealed no features associated with AC. Screening for infections was negative, there was no substance abuse, medication or vaccination. Possible disease triggers were competitive sport events. Myosin and troponin I autoantibodies were detected at titers up to 1:320. We used allele-specific RT-PCR to distinguish if the patients' allele classified as “normal” was actually defective due to promotor mutation or epigenetic silencing. RT-PCRs were done on EMBs and peripheral blood mononuclear cells (PBMCs). In a cohort of dilated cardiomyopathy (DCM) patients we were able to detect DSP transcripts in both, PBMC and left-ventricular heart tissue. RNA sequencing of human PBMC subpopulations suggested that DSP transcription may be restricted to certain immune cell subtypes. RT-PCRs revealed that both Arg1458* carriers have a functional second DSP allele, indicating that their “DSP knockout” occurs at the protein level and may be due to protein instability and degradation within desmosomes. We screened additional existing cohorts for such variants and identified stopgain variant Gln307Ter in a 37-yrs-old woman with ARVC. This patient's sister died from heart failure at the age of 39. In a 59-yrs-old female LVNC patient, stopgain variant Y1391X was identified. Here, family history was unclear, her brother probably died from coronary artery disease. In a 71-yrs-old female DCM patient with no family history, stopgain variant Tyr1512Ter was identified. Conclusions The described patients with DSP truncations strongly suggest the existence of additional genetic or exogenous modifiers driving pathogenesis either way. DSP defects may cause recurrent myocarditis, and mutation screening is advisable to enable early detection of high-risk patients with similar phenotypes. Our finding of complete myocardial DSP protein loss emphasizes that DNA sequencing may miss critical molecular disturbances. It is indispensable to also analyze transcriptome and protein level in the tissue actually affected in a patient in order to recognize his/her individual pathogenesis.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Kaori Sekine ◽  
Akira T. Kawaguchi ◽  
Masaki Miyazawa ◽  
Haruo Hanawa ◽  
Shinichi Matsuda ◽  
...  

Fulminant myocarditis causes impaired cardiac function, leading to poor prognosis and heart failure. Cell sheet engineering is an effective therapeutic option for improving cardiac function. Naïve blood mononuclear cells (MNCs) have been previously shown to enhance the quality and quantity of cellular fractions (QQMNCs) with anti-inflammatory and vasculogenic potential using the one culture system. Herein, we investigated whether autologous cell sheet transplant with QQMNCs improves cardiac function in a rat model with experimental autoimmune myocarditis (EAM). Fibroblast sheets (F-sheet), prepared from EAM rats, were co-cultured with or without QQMNCs (QQ+F sheet) on temperature-responsive dishes. QQ+F sheet induced higher expression of anti-inflammatory and vasculogenic genes (Vegf-b, Hgf, Il-10, and Mrc1/Cd206) than the F sheet. EAM rats were transplanted with either QQ+F sheet or F-sheet, and the left ventricular (LV) hemodynamic analysis was performed using cardiac catheterization. Among the three groups (QQ+F sheet, F-sheet, operation control), the QQ+F sheet transplant group showed alleviation of end-diastolic pressure–volume relationship on a volume load to the same level as that in the healthy group. Histological analysis revealed that QQ+F sheet transplantation promoted revascularization and mitigated fibrosis by limiting LV remodeling. Therefore, autologous QQMNC-modified F-sheets may be a beneficial therapeutic option for EAM.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 420
Author(s):  
Maria Marketou ◽  
Joanna Kontaraki ◽  
Alexandros Patrianakos ◽  
George Kochiadakis ◽  
Ioannis Anastasiou ◽  
...  

Background: microRNAs (miRs) have emerged as important modulators of cardiovascular development and disease. Our aim was to determine whether cardiac-related miRs such as miR-21-5p and miR-1-3p were differentially expressed in acute viral myocarditis and whether any of them was related with the extent of myocardial damage and left ventricular dysfunction. Methods: We enrolled 40 patients with acute viral myocarditis. Blood samples were taken on admission and miRs expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Results: miR-21-5p, miR-1-3p were significantly elevated in acute myocarditis. miR-21-5p levels showed a strong correlation with global longitudinal strain (r = 0.71, p < 0.01), while miR-1-3p had significant correlations with troponin I (r = 0.79, p < 0.01). Conclusions: The expression of miR-21-5p and miR-1-3p in peripheral blood is increased in acute viral myocarditis, and this increase is correlated with myocardial damage and indicative of left ventricular systolic dysfunction in these patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lujin Wu ◽  
Wei Wang ◽  
Qianru Leng ◽  
Nana Tang ◽  
Ning Zhou ◽  
...  

The manifestations of hyperthyroidism-related myocardial damage are multitudinous, including arrhythmia, dilated cardiomyopathy, valvular diseases, and even cardiogenic shock. Acute myocarditis induced by thyrotoxicosis had been reported in a few studies. However, attention on its prevalence and underlying mechanisms is sorely lacking. Its long-term harm is often ignored, and it may eventually develop into dilated cardiomyopathy and heart failure. We report a case of Graves' disease with a progressive elevation of hypersensitive cardiac troponin-I at several days after discontinuation of the patient's anti-thyroid drugs. Cardiac magnetic resonance imaging (CMRI) showed inflammatory edema of some cardiomyocytes (stranded enhanced signals under T2 mapping), myocardial necrosis (scattered enhanced signals under T1 late gadolinium enhancement) in the medial and inferior epicardial wall, with a decreased left ventricular systolic function (48%), which implied a possibility of acute myocarditis induced by thyrotoxicosis. The patient was then given a transient glucocorticoid (GC) treatment and achieved a good curative effect. Inspired by this case, we aim to systematically elaborate the pathogenesis, diagnosis, and treatment of hyperthyroidism-induced autoimmune myocarditis. Additionally, we emphasize the importance of CMRI and GC therapy in the diagnosis and treatment of hyperthyroidism-related myocarditis.


Author(s):  
Jia Hui Zeng ◽  
Ying-Xia Liu ◽  
Jing Yuan ◽  
Fu-Xiang Wang ◽  
Wei-Bo Wu ◽  
...  

Background: The Coronavirus Disease 2019 (COVID-19) has been demonstrated as the cause of pneumonia. Nevertheless, it has not been reported as the cause of acute myocarditis or fulminant myocarditis. Case Presentation: A 63-year-old male was admitted with pneumonia and cardiac symptoms. He was genetically confirmed as COVID-19 by testing sputum on the first day of admission. He also had an elevated troponin-I (Trop I) level and diffuse myocardial dyskinesia along with decreased left ventricular ejection fraction (LVEF) on echocardiography. The highest level of Interleukin 6 was 272.40pg/ml. Bedside chest radiograph had typical ground-glass changes of viral pneumonia. The laboratory test results of virus that can cause myocarditis are all negative. The patient conformed to the diagnostic criteria of Chinese expert consensus statement for fulminant myocarditis. After receiving antiviral therapy and mechanical life support, the Trop I reduced to 0.10 g/L, and Interleukin 6 was 7.63 pg/ml. Meanwhile the LVEF of the patient gradually recovered to 68%. Conclusion: COVID-19 patients may develop severe cardiac complications such as myocarditis and heart failure, and this is the first case of COVID-19 infection complicated with fulminant myocarditis. The mechanism of cardiac pathology caused by COVID-19 needs further study.


2011 ◽  
Vol 29 (28) ◽  
pp. 3747-3752 ◽  
Author(s):  
Cezary Cybulski ◽  
Dominika Wokołorczyk ◽  
Anna Jakubowska ◽  
Tomasz Huzarski ◽  
Tomasz Byrski ◽  
...  

Purpose To estimate the risk of breast cancer in a woman who has a CHEK2 mutation depending on her family history of breast cancer. Patients and Methods Seven thousand four hundred ninety-four BRCA1 mutation–negative patients with breast cancer and 4,346 control women were genotyped for four founder mutations in CHEK2 (del5395, IVS2+1G>A, 1100delC, and I157T). Results A truncating mutation (IVS2+1G>A, 1100delC, or del5395) was present in 227 patients (3.0%) and in 37 female controls (0.8%; odds ratio [OR], 3.6; 95% CI, 2.6 to 5.1). The OR was higher for women with a first- or second-degree relative with breast cancer (OR, 5.0; 95% CI, 3.3 to 7.6) than for women with no family history (OR, 3.3; 95% CI, 2.3 to 4.7). If both a first- and second-degree relative were affected with breast cancer, the OR was 7.3 (95% CI, 3.2 to 16.8). Assuming a baseline risk of 6%, we estimate the lifetime risks for carriers of CHEK2 truncating mutations to be 20% for a woman with no affected relative, 28% for a woman with one second-degree relative affected, 34% for a woman with one first-degree relative affected, and 44% for a woman with both a first- and second-degree relative affected. Conclusion CHEK2 mutation screening detects a clinically meaningful risk of breast cancer and should be considered in all women with a family history of breast cancer. Women with a truncating mutation in CHEK2 and a positive family history of breast cancer have a lifetime risk of breast cancer of greater than 25% and are candidates for magnetic resonance imaging screening and for tamoxifen chemoprevention.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1415
Author(s):  
Monika Skrzypiec-Spring ◽  
Agnieszka Sapa-Wojciechowska ◽  
Katarzyna Haczkiewicz-Leśniak ◽  
Tomasz Piasecki ◽  
Joanna Kwiatkowska ◽  
...  

Background: Acute myocarditis often progresses to heart failure because there is no effective, etiology-targeted therapy of this disease. Simvastatin has been shown to be cardioprotective by decreasing matrix metalloproteinases’ (MMPs) activity. The study was designed to determine whether simvastatin inhibits MMPs activity, decreases the severity of inflammation and contractile dysfunction of the heart in experimental autoimmune myocarditis (EAM). Methods: Simvastatin (3 or 30 mg/kg/day) was given to experimental rats with EAM by gastric gavage for 21 days. Then transthoracic echocardiography was performed, MMPs activity and troponin I level were determined and tissue samples were assessed under a light and transmission electron microscope. Results: Hearts treated with simvastatin did not show left ventricular enlargement. As a result of EAM, there was an enhanced activation of MMP-9, which was significantly reduced in the high-dose simvastatin group compared to the low-dose group. It was accompanied by prevention of myofilaments degradation and reduction of severity of inflammation. Conclusions: The cardioprotective effects of simvastatin in the acute phase of EAM are, at least in part, due to its ability to decrease MMP-9 activity and subsequent decline in myofilaments degradation and suppression of inflammation. These effects were achieved in doses equivalent to therapeutic doses in humans.


2011 ◽  
Vol 14 (6) ◽  
pp. 384 ◽  
Author(s):  
Vladimir V. Lomivorotov ◽  
Sergey M. Efremov ◽  
Vladimir A. Shmirev ◽  
Dmitry N. Ponomarev ◽  
Vladimir N. Lomivorotov ◽  
...  

<p><b>Background:</b> The aim of the present study was to investigate the cardioprotective effects of the perioperative use of N(2)-L-alanyl-L-glutamine (GLN) in patients with ischemic heart disease (IHD) who undergo their operations under cardiopulmonary bypass (CPB).</p><p><b>Methods:</b> This double-blind, placebo-controlled, randomized study included 50 patients who underwent cardiac surgery with CPB. Exclusion criteria were a left ventricular ejection fraction <50%, diabetes mellitus, <3 months since the onset of myocardial infarction, and emergency surgery. Patients in the study group (n = 25) received 0.4 g/kg GLN (Dipeptiven, 20% solution) per day. Patients in the control group (n = 25) were administered a placebo (0.9% NaCl). The primary end point was the dynamics of troponin I at the following stages: (1) prior to anesthesia, (2) 30 minutes after CPB, (3) 6 hours after CPB, (4) 24 hours after surgery, and (5) 48 hours after surgery. Secondary end points included measurements of hemodynamics with a Swan-Ganz catheter.</p><p><b>Results:</b> On the first postoperative day after the surgery, the median troponin I level was significantly lower in the study group than in the placebo group: 1.280 ng/mL (interquartile range [IQR], 0.840-2.230 ng/mL) versus 2.410 ng/mL (IQR, 1.060-6.600 ng/mL) (<i>P</i> = .035). At 4 hours after cardiopulmonary bypass (CPB), the median cardiac index was higher in the patients in the study group: 2.58 L/min per m<sup>2</sup> (IQR, 2.34-2.91 L/min per m<sup>2</sup>) versus 2.03 L/min per m<sup>2</sup> (IQR, 1.76-2.32 L/min per m<sup>2</sup>) (<i>P</i> = .002). The median stroke index also was higher in the patients who received GLN: 32.8 mL/m<sup>2</sup> (IQR, 27.8-36.0 mL/m<sup>2</sup>) versus 26.1 mL/m<sup>2</sup> (IQR, 22.6-31.8 mL/m<sup>2</sup>) (<i>P</i> = .023). The median systemic vascular resistance index was significantly lower in the study group than in the placebo group: 1942 dyn�s/cm<sup>5</sup> per m<sup>2</sup> (IQR, 1828-2209 dyn�s/cm<sup>5</sup> per m<sup>2</sup>) versus 2456 dyn�s/cm<sup>5</sup> per m<sup>2</sup> (IQR, 2400-3265 dyn�s/cm<sup>5</sup> per m<sup>2</sup>) (<i>P</i> = .001).</p><p><b>Conclusion:</b> Perioperative administration of GLN during the first 24 hours has cardioprotective effects in IHD patients following CPB. This technique enhances the troponin concentration at 24 hours after surgery and is associated with improved myocardial function.</p>


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
Denise Utami Putri ◽  
Cheng-Hui Wang ◽  
Po-Chun Tseng ◽  
Wen-Sen Lee ◽  
Fu-Lun Chen ◽  
...  

The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1018
Author(s):  
Abby C. Lee ◽  
Grant Castaneda ◽  
Wei Tse Li ◽  
Chengyu Chen ◽  
Neil Shende ◽  
...  

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yumin Li ◽  
Jia Liu ◽  
Yukun Cao ◽  
Xiaoyu Han ◽  
Guozhu Shao ◽  
...  

AbstractMyocardial fibrosis assessed by late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) is associated with cardiovascular outcomes in hypertrophic cardiomyopathy (HCM) patients, but little is known about the utility of non-invasive markers for detecting LGE. This study aims to explore the association between cardiac-specific biomarkers, CMR myocardial strain, left ventricular (LV) hypertrophy and LGE in HCM patients with preserved ejection fraction (EF) and investigate the predictive values of these indexes for LGE. We recruited 33 healthy volunteers and 86 HCM patients with preserved EF to undergo contrast-enhanced CMR examinations. In total, 48 of 86 HCM patients had the presence of LGE. The LGE-positive patients had significant higher serum high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro b-type natriuretic peptide (Nt-proBNP) levels and lower global longitudinal (GLS) and circumferential (GCS) strains than the LGE-negative group. The LGE% was independently associated with the Nt-proBNP levels, GCS, LV end-diastolic maximum wall thickness (MWT) and beta-blocker treatment. In the receiver operating characteristic curve analysis, the combined parameters of Nt-proBNP ≥ 108.00 pg/mL and MWT ≥ 17.30 mm had good diagnostic performance for LGE, with a specificity of 81.25% and sensitivity of 70.00%. These data indicate that serum Nt-proBNP is a potential biomarker associated with LGE% and, combined with MWT, were useful for identifying myocardial fibrosis in HCM patients with preserved EF. Additionally, LV GCS may be a more sensitive indicator for reflecting the presence of myocardial fibrosis than GLS.


Sign in / Sign up

Export Citation Format

Share Document