Meta-analysis of bovine respiratory microbiota: link between respiratory microbiota and bovine respiratory health

2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Mohamed Zeineldin ◽  
Ahmed A. Elolimy ◽  
Radwa Barakat

ABSTRACT Bovine respiratory microbiota plays a significant role in bovine respiratory health. We conducted a meta-analysis using publicly available 16S rRNA gene datasets from the respiratory tract to characterize respiratory microbiota in feedlot cattle. Our aims were to determine the factors that influence microbiota development and to assess the differences in microbiota composition and diversity between healthy calves and those that developed bovine respiratory disease (BRD). Our results showed that the overall composition and diversity of respiratory microbiota in cattle were significantly affected by study design, 16S rRNA hypervariable region sequenced, health status, time since arrival to the feedlot, sampling sites in the respiratory tract and antibiotic treatment. Assessment of diversity indices showed a statistically significant difference between the BRD-affected cattle and healthy control calves. Using multivariate network analysis and Spearman's correlation analyses, we further distinguished the taxa that were commonly associated with BRD when the day of arrival to the feedlot was added to the model. The probability of being identified as BRD was significantly correlated with days 7, 12 and 14 following the calf's arrival to the feedlot. These findings could help in proposing strategies to further evaluate the link between respiratory microbiota and bovine respiratory health.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 814
Author(s):  
Münir Aktaş ◽  
Sezayi Özübek ◽  
Mehmet Can Uluçeşme

Anaplasma phagocytophilum causes tick-borne fever in small ruminants. Recently, novel Anaplasma variants related to A. phagocytophilum have been reported in ruminants from Tunisia, Italy, South Korea, Japan, and China. Based on 16S rRNA and groEL genes and sequencing, we screened the frequency of A. phagocytophilum and related variants in 433 apparently healthy small ruminants in Turkey. Anaplasma spp. overall infection rates were 27.9% (121/433 analyzed samples). The frequency of A. phagocytophilum and A. phagocytophilum-like 1 infections was 1.4% and 26.5%, respectively. No A. phagocytophilum-like 2 was detected in the tested animals. The prevalence of Anaplasma spp. was comparable in species, and no significant difference was detected between sheep and goats, whereas the prevalence significantly increased with tick infestation. Sequencing confirmed PCR-RFLP data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Phylogeny-based on 16S rRNA gene revealed the A. phagocytophilum-like 1 in a separate clade together with the previous isolates detected in small ruminants and ticks. In this work, A. phagocytophilum-like 1 has been detected for the first time in sheep and goats from Turkey. This finding revealed that the variant should be considered in the diagnosis of caprine and ovine anaplasmosis.


2020 ◽  
Vol 41 (S1) ◽  
pp. s179-s180
Author(s):  
Erik Clarke ◽  
Kathleen None Chiotos ◽  
James Harrigan ◽  
Ebbing Lautenbach ◽  
Emily Reesey ◽  
...  

Background: Healthcare exposure results in significant microbiome disruption, particularly in the setting of critical illness, which may contribute to risk for healthcare-associated infections (HAIs). Patients admitted to long-term acute-care hospitals (LTACHs) have extensive prior healthcare exposure and critical illness; significant microbiome disruption has been previously documented among LTACH patients. We compared the predictive value of 3 respiratory tract microbiome disruption indices—bacterial community diversity, dominance, and absolute abundance—as they relate to risk for ventilator-associated pneumonia (VAP) and adverse ventilator-associated events (VAE), which commonly complicate LTACH care. Methods: We enrolled 83 subjects on admission to an academic LTACH for ventilator weaning and performed longitudinal sampling of endotracheal aspirates, followed by 16S rRNA gene sequencing (Illumina HiSeq), bacterial community profiling (QIIME2) for diversity, and 16S rRNA quantitative PCR (qPCR) for total bacterial abundance. Statistical analyses were performed with R and Stan software. Mixed-effects models were fit to relate the admission MDIs to subsequent clinically diagnosed VAP and VAE. Results: Of the 83 patients, 19 had been diagnosed with pneumonia during the 14 days prior to LTACH admission (ie, “recent past VAP”); 23 additional patients were receiving antibiotics consistent with empiric VAP therapy within 48 hours of admission (ie, “empiric VAP therapy”); and 41 patients had no evidence of VAP at admission (ie, “no suspected VAP”). We detected no statistically significant differences in admission Shannon diversity, maximum amplicon sequence variant (ASV)–level proportional abundance, or 16S qPCR across the variables of interest. In isolation, all 3 admission microbiome disruption indices showed poor predictive performance, though Shannon diversity performed better than maximum ASV abundance. Predictive models that combined (1) bacterial diversity or abundance with (2) recent prior VAP diagnosis and (3) concurrent antibiotic exposure best predicted 14-day VAP (type S error < 0.05) and 30-day VAP (type S error < 0.003). In this cohort, VAE risk was paradoxically associated with higher admission Shannon diversity and lower admission maximum ASV abundance. Conclusions: In isolation, respiratory tract microbiome disruption indices obtained at LTACH admission showed poor predictive performance for subsequent VAP and VAE. But diversity and abundance models incorporating recent VAP history and admission antibiotic exposure performed well predicting 14-day and 30-day VAP.Disclosures: NoneFunding: None


Author(s):  
Reza Ranjbar ◽  
Mehdi Anjomruz ◽  
Ahmad Ali Enayati ◽  
Mehdi Khoobdel ◽  
Atiyeh Rafinejad ◽  
...  

Background: Anaplasmosis and Ehrlichiosis are the most important tick-borne diseases. This study was conducted in three cities of Kerman Province in Iran to investigate the circulation of the bacteria in ticks collected from sheep. Methods: Ticks were collected from animals using Srkj forceps and transferred to the Entomology lab in cold chain. After specimen’s identification, they kept at -70 ºC. Tick DNA was extracted using Bioneers DNA extraction kits followed by Nested PCR technique to amplify ribosomal 16S rRNA gene to detect Anaplasma infection in ticks. Results: 472 sheep were examined from which 349 ticks were collected and identified in laboratory using valid keys. Tick specimens belonged to two genera and four species; Hyalomma marginatum (62.47%) was the most frequent and Hylomma asiaticum (5.73%) showed the least abundance. The infestation rate to different tick species was different in three regions of Kerman Province. Observation revealed that 24 specimens (58.3%) were positive for Anaplasma. There is a significant difference between male and female infection rate. However, there is no significant difference between these variables in each of these cities. Conclusion: This study shows high infection rates to Anaplasma in hard ticks. It is essential for health and veterinary authorities and farmers to use appropriate strategies to control ticks to reduce the infestation.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262057
Author(s):  
Claire A. Woodall ◽  
Luke J. McGeoch ◽  
Alastair D. Hay ◽  
Ashley Hammond

Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15–2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.


2021 ◽  
Vol 14 ◽  
pp. 175628642110356
Author(s):  
Andreas Totzeck ◽  
Elakiya Ramakrishnan ◽  
Melina Schlag ◽  
Benjamin Stolte ◽  
Kathrin Kizina ◽  
...  

Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG ( n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers ( n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.


2002 ◽  
Vol 68 (3) ◽  
pp. 1265-1279 ◽  
Author(s):  
Michelle A. Furlong ◽  
David R. Singleton ◽  
David C. Coleman ◽  
William B. Whitman

ABSTRACT The microbial populations in no-till agricultural soil and casts of the earthworm Lumbricus rubellus were examined by culturing and molecular methods. Clone libraries of the 16S rRNA genes were prepared from DNA isolated directly from the soil and earthworm casts. Although no single phylum dominated the soil library of 95 clones, the largest numbers of clones were from Acidobacteria (14%), Cytophagales (13%), Chloroflexi (8%), and γ-Proteobacteria (8%). While the cast clone library of 102 clones was similar to the soil library, the abundances of several taxa were different. Representatives of the Pseudomonas genus as well as the Actinobacteria and Firmicutes increased in number, and one group of unclassified organisms found in the soil library was absent in the cast library. Likewise, soil and cast archaeal 16S rRNA gene libraries were similar, although the abundances of some groups were different. Two hundred and thirty aerobic bacteria were also isolated on general heterotrophic media from casts, burrows, and soil. The cast isolates were both phenotypically and genotypically different from the soil isolates. The cast isolates were more likely to reduce nitrate, grow on acetate and Casamino Acids, and utilize fewer sugars than the soil isolates. On the basis of their ribotypes, the cast isolates were dominated by Aeromonas spp. (28%), which were not found in the soil isolates, and other γ-Proteobacteria (49%). In contrast, the soil isolates were mostly Actinobacteria (53%), Firmicutes (16%), and γ-Proteobacteria (19%). Isolates obtained from the sides of earthworm burrows were not different from the soil isolates. Diversity indices for the collections of isolates as well as rRNA gene libraries indicated that the species richness and evenness were decreased in the casts from their levels in the soil. These results were consistent with a model where a large portion of the microbial population in soil passes through the gastrointestinal tract of the earthworm unchanged while representatives of some phyla increase in abundance.


2015 ◽  
Vol 1130 ◽  
pp. 63-66 ◽  
Author(s):  
Lorena Escudero ◽  
Jonathan Bijman ◽  
Guajardo M. Mariela ◽  
Juan José Pueyo Mur ◽  
Guillermo Chong ◽  
...  

To understand the microbial community inhabiting in an acidic salt flat the phylogenetic diversity and the geochemistry of this system was compared to acid mine drainage (AMD) systems. The microbial community structure was assessed by DNA extraction/PCR/DGGE and secuencing for the 16S rRNA gene and the geochemistry was analyzed using several approaches. Prediction of metagenome functional content was performed from the 16S rRNA gene survey using the bioinformatics software package Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The geochemical results revealed a much lower iron concentration in the salt flat than in AMD systems (39 and 21804 mg L-1, respectively) and a significant difference in chloride levels. Sequences inferred to be from potential sulfur metabolizing organisms constituted up to 70% of the microbial community in the acidic salt flat meanwhile predominat iron-metabolizing acidophile populations were reported in AMD systems. Interestingly, the microbial assemblage in the acidic salt flat was dominated by mixotrophic and organotrophic sulfur oxidizers as well as by photoautotrophic acidophiles. Our results suggests that the salt concentration in Salar de Gorbea (average Cl-= 40 gL-1) is in the limit for the occurrence of chemolithotrophic oxidation of sulfur compounds. In addition, the investigation allows concluding that salinity rather than extremes of pH is the major environmental determinant of microbial community composition.


2014 ◽  
Vol 53 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Chloé Plouzeau ◽  
Pascale Bémer ◽  
Anne Sophie Valentin ◽  
Geneviève Héry-Arnaud ◽  
Didier Tandé ◽  
...  

The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI.


2010 ◽  
Vol 1 (2) ◽  
pp. 197-207 ◽  
Author(s):  
W. Fernando ◽  
J. Hill ◽  
G. Zello ◽  
R. Tyler ◽  
W. Dahl ◽  
...  

The effects of diets supplemented with either chickpea or its main oligosaccharide raffinose on the composition of the faecal microbial community were examined in 12 healthy adults (18-65 years) in a randomised crossover intervention study. Subjects consumed their usual diet supplemented with soups and desserts that were unfortified, or fortified with either 200 g/d of canned chickpeas or 5 g/d of raffinose for 3 week periods. Changes in faecal bacterial populations of subjects were examined using 16S rRNA-based terminal restriction fragment length polymorphisms (T-RFLP) and clone libraries generated from the diet pools. Classification of the clone libraries and T-RFLP analysis revealed that Faecalibacterium prausnitzii, reported to be an efficient butyrate producer and a highly metabolically active bacterium in the human intestinal microbiota, was more abundant in the raffinose diet and the chickpea diet compared to the control diet. However, no significant difference was observed in the faecal total short chain fatty acid concentration or in the levels of the components (butyrate, acetate and propionate) with the chickpea diet or the raffinose diet compared to the control diet. Bifidobacterium species were detected by T-RFLP in all three diet groups and quantitative real-time PCR (qPCR) analysis showed a marginal increase in 16S rRNA gene copies of Bifidobacterium with the raffinose diet compared to control (P>0.05). The number of individuals showing TRFs for the Clostridium histolyticum - Clostridum lituseburense groups, which include pathogenic bacteria species and putrefactive bacteria, were lower in the chickpea diet compared to the other two treatments. Diet appeared to affect colonisation by a high ammonia-producing bacterial isolate which was detected in 83%, 92% and 42% of individuals in the control, raffinose and chickpea groups, respectively. Our results indicate that chickpea and raffinose have the potential to modulate the intestinal microbial composition to promote intestinal health in humans.


Sign in / Sign up

Export Citation Format

Share Document