scholarly journals Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases

Glycobiology ◽  
2020 ◽  
Vol 30 (4) ◽  
pp. 241-253 ◽  
Author(s):  
Edward B Irvine ◽  
Galit Alter

Abstract Abundant evidence points to a critical role for antibodies in protection and pathology across infectious diseases. While the antibody variable domain facilitates antibody binding and the blockade of infection, the constant domain (Fc) mediates cross talk with the innate immune system. The biological activity of the Fc region is controlled genetically via class switch recombination, resulting in the selection of distinct antibody isotypes and subclasses. However, a second modification is made to all antibodies, via post-translational changes in antibody glycosylation. Studies from autoimmunity and oncology have established the role of immunoglobulin G (IgG) Fc glycosylation as a key regulator of humoral immune activity. However, a growing body of literature, exploring IgG Fc glycosylation through the lens of infectious diseases, points to the role of inflammation in shaping Fc-glycan profiles, the remarkable immune plasticity in antibody glycosylation across pathogen-exposed populations, the canonical and noncanonical functions of glycans and the existence of antigen-specific control over antibody Fc glycosylation. Ultimately, this work provides critical new insights into the functional roles for antibody glycosylation as well as lays the foundation for leveraging antibody glycosylation to drive prevention or control across diseases.

2018 ◽  
Vol 7 (9) ◽  
pp. 258 ◽  
Author(s):  
Zhiyi Huang ◽  
Yu Liu ◽  
Guangying Qi ◽  
David Brand ◽  
Song Zheng

Vitamin A (VitA) is a micronutrient that is crucial for maintaining vision, promoting growth and development, and protecting epithelium and mucus integrity in the body. VitA is known as an anti-inflammation vitamin because of its critical role in enhancing immune function. VitA is involved in the development of the immune system and plays regulatory roles in cellular immune responses and humoral immune processes. VitA has demonstrated a therapeutic effect in the treatment of various infectious diseases. To better understand the relationship between nutrition and the immune system, the authors review recent literature about VitA in immunity research and briefly introduce the clinical application of VitA in the treatment of several infectious diseases.


2021 ◽  
Vol 22 (12) ◽  
pp. 6613
Author(s):  
Fernando C. Baltanás ◽  
Rósula García-Navas ◽  
Eugenio Santos

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS–PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


2012 ◽  
Vol 109 (40) ◽  
pp. E2699-E2706 ◽  
Author(s):  
R. Ouchida ◽  
H. Mori ◽  
K. Hase ◽  
H. Takatsu ◽  
T. Kurosaki ◽  
...  

Author(s):  
Carmen Lopez ◽  
Mingfeng Cao ◽  
Zhanyi Yao ◽  
Zengyi Shao

Production of industrially relevant compounds in microbial cell factories can employ either genomes or plasmids as an expression platform. Selection of plasmids as pathway carriers is advantageous for rapid demonstration but poses a challenge of stability. Yarrowia lipolytica has attracted great attention in the past decade for the biosynthesis of chemicals related to fatty acids at titers attractive to industry, and many genetic tools have been developed to explore its oleaginous potential. Our recent studies on the autonomously replicating sequences (ARSs) of nonconventional yeasts revealed that the ARSs from Y. lipolytica showcase a unique structure that includes a previously unannotated sequence (spacer) linking the origin of replication (ORI) and the centromeric (CEN) element and plays a critical role in modulating plasmid behavior. Maintaining a native 645-bp spacer yielded a 4.5-fold increase in gene expression and higher plasmid stability compared to a more universally employed minimized ARS. Testing the modularity of the ARS sub-elements indicated that plasmid stability exhibits a pronounced cargo dependency. Instability caused both plasmid loss and intramolecular rearrangements. Altogether, our work clarifies the appropriate application of various ARSs for the scientific community and sheds light on a previously unexplored DNA element as a potential target for engineering Y. lipolytica.


2020 ◽  
Vol 9 (4) ◽  
pp. 1725-1734
Author(s):  
Guobin Tan ◽  
Zijun Xuan ◽  
Zhiqin Li ◽  
Shuitong Huang ◽  
Guangming Chen ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Yu ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Jueun Oh ◽  
Deok Jeong ◽  
...  

Inflammation is a complex biological response of tissues to harmful stimuli such as pathogens, cell damage, or irritants. Inflammation is considered to be a major cause of most chronic diseases, especially in more than 100 types of inflammatory diseases which include Alzheimer's disease, rheumatoid arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, hepatitis, and Parkinson's disease. Recently, an increasing number of studies have focused on inflammatory diseases. TBK1 is a serine/threonine-protein kinase which regulates antiviral defense, host-virus interaction, and immunity. It is ubiquitously expressed in mouse stomach, colon, thymus, and liver. Interestingly, high levels of active TBK1 have also been found to be associated with inflammatory diseases, indicating that TBK1 is closely related to inflammatory responses. Even though relatively few studies have addressed the functional roles of TBK1 relating to inflammation, this paper discusses some recent findings that support the critical role of TBK1 in inflammatory diseases and underlie the necessity of trials to develop useful remedies or therapeutics that target TBK1 for the treatment of inflammatory diseases.


2020 ◽  
Vol 12 (4) ◽  
pp. 405-416
Author(s):  
Johan Lilja ◽  
Pernilla Ingelsson ◽  
Kristen Snyder ◽  
Ingela Bäckström ◽  
Christer Hedlund

Purpose Metaphors are a powerful and human way of understanding and experiencing one kind of thing in terms of another. In quality management (QM), several metaphors are used to describe and bring to life the often-abstract QM concepts and systems. These metaphors are of great importance for how QM is understood, communicated and practiced. However, the metaphors of QM have seldom been systematically screened or put in focus, neither the topic of a critical discussion. The purpose of this paper is hence to contribute with a screening of the metaphors currently used, within QM literature and in practice among QM leaders, and then elaborate on their potential for improvement and development. Design/methodology/approach The paper is based on a literature review combined with interviews of QM leaders. Findings The paper highlights that the current QM metaphors provide intuitive associations to properties such as stability, shelter, and structure, but not to the important dynamic properties of QM, such as learning, or to the critical role of people in QM. What can be seen as core properties of QM are communicated by texts or labels added on to metaphors with properties that often are in sharp contrast to them. The paper also provides suggestions for further improvements and development. Originality/value The paper highlights the area of metaphors within QM as an important area for future research. It also provides insights concerning the successful use and selection of metaphors in future QM practice.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Saliou Niassy ◽  
Sevgan Subramanian ◽  
Sunday Ekesi ◽  
Joel L. Bargul ◽  
Jandouwe Villinger ◽  
...  

Virulence is the primary factor used for selection of entomopathogenic fungi (EPF) for development as biopesticides. To understand the genetic mechanisms underlying differences in virulence of fungal isolates on various arthropod pests, we compared the chitinase genes,chi2andchi4, of 8 isolates ofMetarhizium anisopliae. The clustering of the isolates showed various groups depending on their virulence. However, the analysis of their chitinase DNA sequenceschi2andchi4did not reveal major divergences. Although their protein translates have been implicated in fungal virulence, the predicted protein structure ofchi2was identical for all isolates. Despite the critical role of chitin digestion in fungal infection, we conclude thatchi2andchi4genes cannot serve as molecular markers to characterize observed variations in virulence amongM. anisopliaeisolates as previously suggested. Nevertheless, processes controlling the efficient upregulation of chitinase expression might be responsible for different virulence characteristics. Further studies using comparative “in vitro” chitin digestion techniques would be more appropriate to compare the quality and the quantity of chitinase production between fungal isolates.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-843 ◽  
Author(s):  
Elena A. Ostrakhovitch ◽  
Shawn S.-C. Li

The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.


Sign in / Sign up

Export Citation Format

Share Document