scholarly journals Mycobacterium tuberculosis HN878 Infection Induces Human-Like B-Cell Follicles in Mice

2019 ◽  
Vol 221 (10) ◽  
pp. 1636-1646 ◽  
Author(s):  
José Alberto Choreño-Parra ◽  
Suhas Bobba ◽  
Javier Rangel-Moreno ◽  
Mushtaq Ahmed ◽  
Smriti Mehra ◽  
...  

Abstract Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical “hypervirulent” Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.

2021 ◽  
Vol 22 (3) ◽  
pp. 1118
Author(s):  
Abdulaziz Alamri ◽  
Derek Fisk ◽  
Deepak Upreti ◽  
Sam K. P. Kung

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


2021 ◽  
Vol 9 (3) ◽  
pp. 622
Author(s):  
Daniel Betancur ◽  
Camila Muñoz Grez ◽  
Angel Oñate

Background: Periodontitis is a chronic inflammatory disease associated with a dysbiotic biofilm. Many pathogens have been related with its progression and severity, one of which is Aggregatibacter actinomycetemcomitans, a Gram-negative bacteria with seven serotypes (a–g) according with the structure of its LPS, with serotype b defined as the most virulent compared with the other serotypes. The aim of this study was to evaluate the response of oral keratinocytes and macrophages to A. actinomycetemcomitans. Methods: Oral keratinocytes (OKF6/TERT2) and macrophages (THP-1) were infected with A. actinomycetemcomitans serotypes a, b and c. The expression of IL-1β, IL-6, IL-8, IL-18, TNF-α, MMP-9, RANKL, TLR-2, TLR-4, TLR-6, thymic stromal lymphopoietin (TSLP), and ICAM-1 was evaluated by qPCR at 2 and 24 h after infection. Results: An increase in the expression of these molecules was induced by all serotypes at both times of infection, with macrophages showing higher levels of expression at 24 h compared to epithelial cells in which the highest levels were observed in the first hours after infection. Conclusions: Keratinocytes and macrophages contribute to the inflammation in periodontitis from the early stages of infection, producing the first waves of cytokines, acting as the first signal for professional immune cell recruitment and modulation of more specific immune responses.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 79-80
Author(s):  
E. Pontarini ◽  
F. Chowdhury ◽  
E. Sciacca ◽  
S. Grigoriadou ◽  
F. Rivellese ◽  
...  

Background:The pathogenic role of B-cells in primary Sjögren’s Syndrome (pSS) is well established and B cell abnormalities. Because of the substantial role of B-cells, rituximab (RTX), a chimeric anti-CD20 monoclonal antibody, has been considered as a potential biologic disease modifying drug to reduce disease activity in pSS. To date, the TRial for Anti-B-Cell Therapy In patients with pSS (TRACTISS) is the largest multi-centre, placebo-controlled trial with RTX. Despite the unmet primary endpoints (30% reduction in fatigue or oral dryness, measured by visual analogue scale), RTX treated patients showed an improvement in unstimulated whole salivary flow (Bowman et al. Arthritis Rheumatol 2017;69:1440–1450).Objectives:To provide the first longitudinal transcriptomic and histological analysis at 3 time points over 48 weeks of labial SGs of pSS patients treated with RTX, in comparison to placebo, from the TRACTISS cohort.Methods:26 pSS patients randomised to RTX or placebo arm consented for labial SG biopsies at baseline, weeks 16 and 48. Patients received two 1000mg cycles of RTX or placebo at baseline and week 24. SG focus score, inflammatory aggregate area fraction, B-cells (CD20+), T-cells (CD3+), follicular dendritic cells (FDCs) (CD21+) and plasma cells (CD138+) density were assessed by H&E and immunofluorescence staining. The histological analysis was performed by digital imaging using QuPath software. RNA was extracted from matched labial SG lobules and sequenced with Illumina platform. A Principal Component Analysis (PCA) and features driving the PCA were investigated along with the most influential gene loadings. The limma-voom R pipeline was used to extract Differential Expressed Genes (DEGs) between placebo and RTX group at week 48, and gene ontology (GO) enrichment analysis performed through EnrichR to derive GO terms and pathways associated with DEGs.Results:Placebo-treated labial SGs showed a worsening of inflammation highlighted by the increment of B-cell density, development of new FDC networks, and a higher ectopic GC prevalence at week 48, compared to RTX-treated patients. No difference in total T-cells and plasma cell infiltration was observed. RTX downregulated genes involved in immune cell recruitment and inflammatory aggregate organisation (e.g. CCR7, CCL19, CD52, and PDCD1) and gene signature-based analysis of 64 immune cell types highlighted how RTX preferentially blocked class-switched- and memory-B-cells infiltration in SGs at week 48. Pathway analyses confirmed the downregulation of leukocyte migration, MHC class II antigen presentation, and T-cell co-stimulation immunological pathways, such as the CD40 receptor complex pathway. The analysis of placebo SGs transcriptomic at week 48 showed a higher expression of genes linked to ectopic GC organisation, such as CXCL13, CCL19, LTβ, in female compared to male subjects. Gender was confirmed as a key co-variate responsible for most of the variation in the PCA, together with the SG focus score and the foci area fraction.Conclusion:Treatment with RTX showed beneficial effects on labial SG inflammatory infiltration in pSS, by downregulating genes involved in immune cell recruitment, activation and organisation in ectopic GCs. Class-switched-B-cells, memory-B-cells and FDC network development were primarily affected appearing to be responsible for the lack of progression in SG B cell infiltration in the RTX compared to the placebo arm in which clear worsening of SG immunopathology over 48 weeks was detected in female patients. Although a clear association with the clinical improvement in unstimulated salivary flow observed at week 48 in RTX-treated patients could not be established given the low number of patients consenting to 3 longitudinal biopsies it is conceivable that RTX is responsible for preserving exocrine function.Acknowledgements:SJB receives a salary contribution from the NIHR Birmingham Biomedical Research Centre.Disclosure of Interests:Elena Pontarini: None declared, Farzana Chowdhury: None declared, Elisabetta Sciacca: None declared, Sofia Grigoriadou: None declared, Felice Rivellese: None declared, Davide Lucchesi: None declared, Katriona Goldmann: None declared, Liliane Fossati-Jimack: None declared, Paul Emery: None declared, Wan Fai Ng: None declared, Nurhan Sutcliffe: None declared, Colin Everett: None declared, Catherine Fernandez: None declared, Anwar Tappuni: None declared, Myles Lewis: None declared, Costantino Pitzalis: None declared, Simon J. Bowman Consultant of: SJB In 2020 I have received consultancy fees from Novartis, Abbvie and Galapagos., Michele Bombardieri: None declared


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruth Seelige ◽  
Robert Saddawi-Konefka ◽  
Nicholas M. Adams ◽  
Gaëlle Picarda ◽  
Joseph C. Sun ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 54
Author(s):  
Tobias Plowman ◽  
Dimitris Lagos

The highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, igniting an unprecedented pandemic. A mechanistic picture characterising the acute immunopathological disease in severe COVID-19 is developing. Non-coding RNAs (ncRNAs) constitute the transcribed but un-translated portion of the genome and, until recent decades, have been undiscovered or overlooked. A growing body of research continues to demonstrate their interconnected involvement in the immune response to SARS-CoV-2 and COVID-19 development by regulating several of its pathological hallmarks: cytokine storm syndrome, haemostatic alterations, immune cell recruitment, and vascular dysregulation. There is also keen interest in exploring the possibility of host–virus RNA–RNA and RNA–RBP interactions. Here, we discuss and evaluate evidence demonstrating the involvement of short and long ncRNAs in COVID-19 and use this information to propose hypotheses for future mechanistic and clinical studies.


2013 ◽  
Vol 133 (9) ◽  
pp. 2138-2140
Author(s):  
Kimberley A. Beaumont ◽  
Marcia A. Munoz ◽  
Wolfgang Weninger

Author(s):  
Prasad Srikakulapu ◽  
Chantel McSkimming ◽  
Coleen McNamara

Background: CCR6 mediates immune cell recruitment to inflammatory sites and has cell type-specific effects on diet-induced atherosclerosis in mice. Recent studies implicate the local immune responses in the adventitia/perivascular adipose tissue (PVAT) in atherosclerosis development. We have previously demonstrated that adoptive transfer of CD43 - splenocytes (B cells) into B cell deficient μMT -/- ApoE -/- mice results in reduced diet-induced atherosclerosis in a CCR6-dependent manner. Notably, there were significantly greater numbers of B cells in the aorta including PVAT of μMT -/- ApoE -/- mice which received splenic B cells from CCR6 +/+ mice compared to CCR6 -/- mice, despite no difference in B cell numbers in blood, spleen and peritoneal cavity, suggesting that CCR6 expression on B cells is important in B cell aortic homing. Production of IgM antibodies is thought to be a major mechanism whereby B cells limit atherosclerosis development. Yet whether B cells produce IgM locally in the PVAT and whether this is regulated by chemokine receptors such as CCR6 is unknown. Methods and Results: FACS experiments demonstrated high numbers of B cells available in the PVAT than aorta of young ApoE -/- (49121±11190 and 80±11; p<0.001, n=7) mice. ELISPOT experiments demonstrated significantly fewer IgM secreting cells were in the PVAT of ApoE -/- CCR6 -/- mice compared to ApoE -/- CCR6 +/+ mice (100±25 vs 850±150, p<0.05, n=5), despite no differences in IgM secreting cell numbers in spleen and bone marrow. Adoptive transfer of CD43 - splenic B cells from ApoE -/- CCR6 -/- and ApoE -/- CCR6 +/+ mice into secretory IgM deficient ApoE -/- sIgM -/- mice demonstrated significantly reduced atherosclerosis in mice that received B cells from ApoE -/- CCR6 +/+ mice compared to those that received B cells from ApoE -/- CCR6 -/- mice. Moreover, the B cells from ApoE -/- CCR6 +/+ mice attenuated atherosclerosis only when they were capable of secreting IgM. FACS data from human blood demonstrated that circulating B and T cells but not monocytes express CCR6, suggesting potential human relevance to our murine findings. Conclusion: Results provide evidence that CCR6 expression on B cells mediates B cell recruitment into aorta and/or PVAT to provide atheroprotection via IgM secretion.


Sign in / Sign up

Export Citation Format

Share Document