Artemisia frigida (Asterales: Asteraceae) Improves the Growth of Grasshopper Calliptamus abbreviatus and Increases the Risk of Damaging Populations

2020 ◽  
Vol 113 (3) ◽  
pp. 1195-1201
Author(s):  
Xunbing Huang ◽  
Hidayat Ullah ◽  
Zehua Zhang ◽  
Shenjin Lv

Abstract The grasshopper Calliptamus abbreviatus Ikonn is a significant pest species distributed across the northern Asian grasslands. Grasshopper plagues often result in significant loss to plant biomass and subsequent deterioration of grass quality that leads to economic depletion. To better understand the close relationship between C. abbreviatus and host plant species, a 2-yr study was conducted. Results showed that the relative density of C. abbreviatus was positively correlated with aboveground biomass of the plant Artemisia frigida. We hypothesized that A. frigida, the most favorable food resource, was optimal for growth performance and that the presence of this plant species led to C. abbreviatus plagues. A controlled feeding trial showed that C. abbreviatus had better growth performance (i.e., survival rate, body mass, and growth rate) when fed on A. frigida and this host was preferred over other plant species since the consumption and food utilization efficiency on plant was comparatively greater. These results were consistent with the distribution of C. abbreviatus in the grassland and suggested that the presence of A. frigida significantly improved C. abbreviatus growth performance. These findings will be useful for designing improved pest management strategies in response to grassland vegetation succession due to grazing, climate change, or human interference.

2017 ◽  
Vol 107 (3) ◽  
pp. 401-409 ◽  
Author(s):  
X.B. Huang ◽  
M.R. McNeill ◽  
J.C. Ma ◽  
X.H. Qin ◽  
X.B. Tu ◽  
...  

AbstractOedaleus asiaticus Bey. Bienko is a significant grasshopper pest species occurring in north Asian grasslands. Outbreaks often result in significant loss in grasses and economic losses. Interestingly, we found this grasshopper was mainly restricted to Stipa-dominated grassland. We suspected this may be related to the dominant grasses species, Stipa krylovii Roshev, and hypothesized that S. krylovii contributes to optimal growth performance and population distribution of O. asiaticus. A 4 year investigation showed that O. asiaticus density was positively correlated to the above-ground biomass of S. krylovii and O. asiaticus growth performance variables (survival rate, size, growth rate) were significantly higher in Stipa-dominated grassland. A feeding trial also showed that O. asiaticus had a higher growth performance when feeding exclusively on S. krylovii. In addition, the choice, consumption and the efficiency of conversion of ingested food (ECI) by O. asiaticus was highest for S. krylovii compared with other plant species found in the Asian grasslands. These ecological and biological traits revealed why O. asiaticus is strongly associated with Stipa-dominated grasslands. We concluded that the existence of S. krylovii benefited the growth performance and explained the distribution of O. asiaticus. These results are useful for improved pest management strategies and developing guidelines for the monitoring of grasshopper population dynamics against the background of vegetation succession and changing plant communities in response to activities such as grazing, fire and climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fathiya M. Khamis ◽  
Fidelis L. O. Ombura ◽  
Inusa J. Ajene ◽  
Komivi S. Akutse ◽  
Sevgan Subramanian ◽  
...  

AbstractWhiteflies (Hemiptera: Aleyrodidae) are devastating agricultural pests of economic importance vectoring pathogenic plant viruses. Knowledge on their diversity and distribution in Kenya is scanty, limiting development of effective sustainable management strategies. The present study is aimed at identifying whitefly pest species present in Kenya across different agroecological zones and establish predictive models for the most abundant species in Africa. Whiteflies were sampled in Kenya from key crops known to be severely infested and identified using 16S rRNA markers and complete mitochondrial genomes. Four whitefly species were identified: Aleyrodes proletella, Aleurodicus dispersus, Bemisia afer and Trialeurodesvaporariorum, the latter being the most dominant species across all the agroecology. The assembly of complete mitogenomes and comparative analysis of all 13 protein coding genes confirmed the identities of the four species. Furthermore, prediction spatial models indicated high climatic suitability of T. vaporariorum in Africa, Europe, Central America, parts of Southern America, parts of Australia, New Zealand and Asia. Consequently, our findings provide information to guide biosecurity agencies on protocols to be adopted for precise identification of pest whitefly species in Kenya to serve as an early warning tool against T. vaporariorum invasion into unaffected areas and guide appropriate decision-making on their management.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


2009 ◽  
Vol 39 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Jeffrey S. Dukes ◽  
Jennifer Pontius ◽  
David Orwig ◽  
Jeffrey R. Garnas ◽  
Vikki L. Rodgers ◽  
...  

Climate models project that by 2100, the northeastern US and eastern Canada will warm by approximately 3–5 °C, with increased winter precipitation. These changes will affect trees directly and also indirectly through effects on “nuisance” species, such as insect pests, pathogens, and invasive plants. We review how basic ecological principles can be used to predict nuisance species’ responses to climate change and how this is likely to impact northeastern forests. We then examine in detail the potential responses of two pest species (hemlock woolly adelgid ( Adelges tsugae Annand) and forest tent caterpillar ( Malacosoma disstria Hubner)), two pathogens (armillaria root rot ( Armillaria spp.) and beech bark disease ( Cryptococcus fagisuga Lind. + Neonectria spp.)), and two invasive plant species (glossy buckthorn ( Frangula alnus Mill.) and oriental bittersweet ( Celastrus orbiculatus Thunb.)). Several of these species are likely to have stronger or more widespread effects on forest composition and structure under the projected climate. However, uncertainty pervades our predictions because we lack adequate data on the species and because some species depend on complex, incompletely understood, unstable relationships. While targeted research will increase our confidence in making predictions, some uncertainty will always persist. Therefore, we encourage policies that allow for this uncertainty by considering a wide range of possible scenarios.


2015 ◽  
Vol 35 (03) ◽  
pp. 137-151 ◽  
Author(s):  
K.B. Badii ◽  
M.K. Billah ◽  
K. Afreh-Nuamah ◽  
D. Obeng-Ofori

An important aspect of fruit fly management is accurate information on the species and their host spectrum. Studies were conducted between October 2011 and September 2013 to determine the host range and species diversity of pest fruit flies in the northern savannah ecology of Ghana. Fruit samples from 80 potential host plants (wild and cultivated) were collected and incubated for fly emergence; 65 (81.5%) of the plant species were positive to fruit flies. From records in Africa, 11 plant species were reported to be new hosts to the African invader fly,Bactrocera invadens(Drew, Tsuruta and White, 2005). This study documented the first records ofDacus ciliatus(Loew) andTrirhithrum nigerrimum(Bezzi) in northern Ghana although both species have been previously reported in other parts of the country. Infestation byB. invadenswas higher in the cultivated fruits;Ceratitis cosyradominated in most wild fruits. Cucurbitaceae were mainly infested by three species ofDacusandBactroceracucurbitae, a specialized cucurbit feeder. Among the commercial fruit species, the highest infestations were observed in mango, tomato, sweet pepper and watermelon, whereas marula plum, soursop, tropical almond, sycamore fig, African peach, shea nut, persimmon, icacina and albarillo dominated the wild host flora. The widespread availability of host plants and the incidence of diverse fly species in the ecology call for particular attention to their impact on commercial fruits and the development of sustainable management strategies against these economically important pests in Ghana.


2018 ◽  
Vol 23 (11) ◽  
pp. 2087 ◽  
Author(s):  
Peng-Yu Jin ◽  
Lu Tian ◽  
Lei Chen ◽  
Xiao-Yue Hong

Understanding pest species composition and their geographic distribution of important spider mites is fundamental and indispensable to establish an integrated pest management program. From a long-term survey during 2008–2017 in mainland China, we found that Tetranychus truncatus was the most frequently sampled Tetranychus spider mite (48.5%), followed by T. pueraricola (21.2%), T. kanzawai (12.5%), T. urticae (red) (5.7%) and T. urticae (green) (4.5%). Among them, T. truncatus was the major mite pest in the north of China. T. kanzawai was the dominant species in the Middle and Lower Reaches of the Yangtze River Region and T. pueraricola was the most important species in the southwest region. Other common and serious pests include Amphitetranychus viennensis (6.8%) and Panonychus citri (3.8%). This pattern was largely different from that in 2002–2004, when T. urticae (green and red) was believed to be the most serious mite pest. The factors involved in the change of species composition are not clear and need more exploration. We suggested that the increasing corn planting range may be partly responsible for the conversion of dominant species from other spider mites to T. truncatus. Further research on the mechanisms underlying the change of dominant species will help develop integrated management strategies.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2021 ◽  
Vol 20 (2) ◽  
pp. 130-138
Author(s):  
Giri Maruto Darmawangsa ◽  
Muhammad Agus Suprayudi ◽  
Nurbambang Priyo Utomo ◽  
Julie Ekasari

This study aimed to evaluate the effect of organic selenium supplementation on diet with different protein levels on the growth performance and protein utilization of African catfish juvenile. A randomized 2×3 factorial design with two dietary protein levels (27% and 32%) and three dietary selenium (Se) supplementation levels (0 mg/kg, 3 mg/kg, and 6 mg/kg diet) in triplicates were applied in the study. African catfish juvenile with an initial average body weight and body length of 27.00 ± 0.14 g and 15.0 ± 0.5 cm, respectively, was reared in 18 units of aquarium (141 L) at a density of 142 fish/m3 for a rearing period of 40 days. Increasing organic Se supplementation level up to 6 mg/kg at high protein feed resulted in higher fish growth and final biomass, lower FCR, and higher protein utilization efficiency than those of other treatments.  Furthermore, supplementation of organic Se also resulted in lower lipid and higher Se concentrations in the fish body as well as higher blood protein level compared to those of the control. In conclusion, the result of this study suggested that dietary supplementation of organic Se up to 6 mg/kg could enhance the growth and protein utilization in African catfish fed with both low and high protein diet.   Keywords: African catfish, growth, dietary protein, protein utilization, organic selenium.   ABSTRAK   Penelitian ini bertujuan mengevaluasi pengaruh suplementasi selenium organik pada pakan dengan kadar protein yang berbeda terhadap kinerja pertumbuhan dan pemanfaatan protein pakan ikan lele Clarias gariepenus. Penelitian didesain menggunakan rancangan acak lengkap faktorial 2×3 dengan dua tingkat protein pakan (27% dan 32%) dan tiga tingkat suplementasi selenium (Se) pakan (0 mg/kg, 3 mg/kg, dan 6 mg/kg diet) sebanyak tiga ulangan. Ikan lele yang digunakan memiliki bobot awal rata-rata dan panjang tubuh 27 ± 0.14 g dan 15.0 ± 0.5 cm, dipelihara dalam 18 unit akuarium (141 L) dengan kepadatan 142 ekor/m3 selama 40 hari pemeliharaan. Peningkatan suplementasi Se organik hingga 6 mg/kg pada ikan yang diberi pakan protein tinggi menghasilkan kinerja pertumbuhan ikan dan biomassa akhir yang lebih tinggi, FCR yang lebih rendah, dan efisiensi pemanfaatan protein pakan yang lebih tinggi daripada perlakuan lain. Selain itu, suplementasi Se organik juga menghasilkan kadar lemak yang lebih rendah dan konsentrasi Se tubuh yang lebih tinggi serta kadar protein darah yang lebih tinggi. Kesimpulan dari penelitian ini yaitu suplementasi Se organik pada pakan hingga 6 mg/kg dapat meningkatkan kinerja pertumbuhan dan pemanfaatan protein pakan pada ikan lele yang diberi pakan dengan kadar protein rendah dan tinggi.   Kata kunci: ikan lele, pertumbuhan, protein pakan, pemanfaatan protein, selenium organik.


Sign in / Sign up

Export Citation Format

Share Document