scholarly journals Lorentz Scanning Electron/Ion Microscopy

Microscopy ◽  
2021 ◽  
Author(s):  
Ken Harada ◽  
Keiko Shimada ◽  
Yoshio Takahashi

Abstract We have developed an observation and measurement method for spatial electromagnetic fields by using scanning electron/ion microscopes, combined with electron holography reconstruction technique. A cross-grating was installed below the specimen, and the specimens were observed under the infocus condition, and the grating was simultaneously observed under the defocus condition. Electromagnetic fields around the specimen were estimated from grating-image distortions. This method is effective for low and middle magnification and resolution ranges; furthermore, this method can in principle be realizable in any electron/ion beam instruments because it is based on the Lorentz force model for charged particle beams. Mini Abstract We have developed a visualization technique for spatial electromagnetic fields by using scanning electron/ion microscopes, combined with electron holography reconstruction technique. A specimen and a cross-grating installed below the specimen were observed simultaneously. The distorted grating image caused by electromagnetic fields around the specimen were quantitatively measured and visualized.

2000 ◽  
Vol 6 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Gerasimos D. Danilatos

A radiofrequency gaseous detection device is proposed for use with instruments employing charged particle beams, such as electron microscopes and ion beam technologies, as well as for detection of ionizing radiations as in proportional counters. An alternating (oscillating) electromagnetic field in the radiofrequency range is applied in a gaseous environment of the instrument. Both the frequency and amplitude of oscillation are adjustable. The electron or ion beam interacts with a specimen and releases free electrons in the gas. Similarly, an ionizing radiation source releases free electrons in the gas. The free electrons are acted upon by the alternating electromagnetic field and undergo an oscillatory motion resulting in multiple collisions with the gas molecules, or atoms. At sufficiently low pressures, the oscillating electrons also collide with surrounding walls. These processes result in an amplified electron signal and an amplified photon signal in a controlled discharge. The amplified signals, which are proportional to the initial number of free electrons, are collected by suitable means for further processing and analysis.


2000 ◽  
Vol 6 (1) ◽  
pp. 12-20
Author(s):  
Gerasimos D. Danilatos

Abstract A radiofrequency gaseous detection device is proposed for use with instruments employing charged particle beams, such as electron microscopes and ion beam technologies, as well as for detection of ionizing radiations as in proportional counters. An alternating (oscillating) electromagnetic field in the radiofrequency range is applied in a gaseous environment of the instrument. Both the frequency and amplitude of oscillation are adjustable. The electron or ion beam interacts with a specimen and releases free electrons in the gas. Similarly, an ionizing radiation source releases free electrons in the gas. The free electrons are acted upon by the alternating electromagnetic field and undergo an oscillatory motion resulting in multiple collisions with the gas molecules, or atoms. At sufficiently low pressures, the oscillating electrons also collide with surrounding walls. These processes result in an amplified electron signal and an amplified photon signal in a controlled discharge. The amplified signals, which are proportional to the initial number of free electrons, are collected by suitable means for further processing and analysis.


1983 ◽  
Vol 1 (3) ◽  
pp. 231-239 ◽  
Author(s):  
R. G. Evans

A simple model is presented for the thermodynamic and hydrodynamic behaviour of solid targets heated by intense charged particle beams. The model gives the temperature and pressure generated by the beam and allows a direct comparison with the pressure generated by laser beams. The model is in good agreement with a coupled thermodynamic hydrodynamic computer simulation.


1989 ◽  
Vol 7 (4) ◽  
pp. 733-741 ◽  
Author(s):  
Kiyoshi Yatsui

An overview is given of recent progress in the industrial applications of intense pulse power and associated particle beams, except for activities in inertial confinement fusion. In particular, several topics are discussed which relate to the applications in the R&D of materials, the excitation of short wavelength lasers, the generation of charged particle beams, and the development of plasma X-ray sources.I. Applications in material processing. If intense pulsed charged particle beams are directed onto materials, only their surfaces where the beam energy is deposited are quickly heated up to very high temperatures. Using the pulsed beam in this way, we might expect to apply them in R&D of materials. Several novel attempts have been made, e.g., on the preparation of thin films by use of a high-density high-temperature plasma, surface modification by surface heating, and ion-beam mixing of multi-layers by use of the focused electron or ion beams, and so on. Furthermore, experimental studies have been done on the surface modification by ion implantation and the evaluation of the damage due to the irradiation by ion beams.II. Applications in the excitation of short wavelength lasers. Activities in the excitation of high-power, short wavelength lasers by using electron beams or ion beams have increased considerably.III. Applications in the generation of charged particle beams, and the development of plasma X-ray source. With regard to new accelerator technologies, several attempts are underway on the application of the modified betatron or the development of a convergent electron beam accelerator with a plasma cathode.


1992 ◽  
Vol 279 ◽  
Author(s):  
M. W. Ruckman ◽  
J. K. Mowlem ◽  
J. F. Moore ◽  
D. R. Strongin ◽  
M. Strongin

ABSTRACTElectron and ion beams can be used to deposit thin films and etch surfaces using gas phase precursors. However, the generation of undesirable gas phase products and the diffusion of the reactive species beyond the region irradiated by the electron or ion beam can limit selectivity. Tn this paper, the feasibility of processing condensed precursors such as diborane, tri-methyl aluminum, ammonia and water at 78 K with low energy (100–1000 eV) electron and ion beams (Ar+, N2+ and H2+) ranging in current density from 50 nA to several μ a per cm2 is examined. It was found that boron, boron nitride and stoichiometric aluminum oxide films could be deposited from the condensed volatile species using charged particle beams and some of the physical and chemical aspects and limitations of this new technique are discussed.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 383-394
Author(s):  
Giuliana Galati ◽  
Andrey Alexandrov ◽  
Behcet Alpat ◽  
Giovanni Ambrosi ◽  
Stefano Argirò ◽  
...  

Abstract The FOOT (FragmentatiOn Of Target) experiment is an international project designed to carry out the fragmentation cross-sectional measurements relevant for charged particle therapy (CPT), a technique based on the use of charged particle beams for the treatment of deep-seated tumors. The FOOT detector consists of an electronic setup for the identification of Z ≥ 3 Z\ge 3 fragments and an emulsion spectrometer for Z ≤ 3 Z\le 3 fragments. The first data taking was performed in 2019 at the GSI facility (Darmstadt, Germany). In this study, the charge identification of fragments induced by exposing an emulsion detector, embedding a C 2 H 4 {{\rm{C}}}_{2}{{\rm{H}}}_{4} target, to an oxygen ion beam of 200 MeV/n is discussed. The charge identification is based on the controlled fading of nuclear emulsions in order to extend their dynamic range in the ionization response.


Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Sign in / Sign up

Export Citation Format

Share Document