Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061

2021 ◽  
Vol 72 (8) ◽  
pp. 3137-3154
Author(s):  
Kaijie Zhu ◽  
Quan Sun ◽  
Hongyan Chen ◽  
Xuehan Mei ◽  
Suwen Lu ◽  
...  

Abstract Chromoplast-specific lycopene β-cyclase (LCYb2) is a critical carotenogenic enzyme, which controls the massive accumulation of downstream carotenoids, especially provitamin A carotenoids, in citrus. Its regulatory metabolism is largely unknown. Here, we identified a group I ethylene response factor, CsERF061, in citrus by yeast one-hybrid screen with the promoter of LCYb2. The expression of CsERF061 was induced by ethylene. Transcript and protein levels of CsERF061 were increased during fruit development and coloration. CsERF061 is a nucleus-localized transcriptional activator, which directly binds to the promoter of LCYb2 and activates its expression. Overexpression of CsERF061 in citrus calli and tomato fruits enhanced carotenoid accumulation by increasing the expression of key carotenoid pathway genes, and increased the number of chromoplasts needed to sequester the elevated concentrations of carotenoids, which was accompanied by changes in the concentrations of abscisic acid and gibberellin. Electrophoretic mobility shift and dual-luciferase assays verified that CsERF061 activates the promoters of nine other key carotenoid pathway genes, PSY1, PDS, CRTISO, LCYb1, BCH, ZEP, NCED3, CCD1, and CCD4, revealing the multitargeted regulation of CsERF061. Collectively, our findings decipher a novel regulatory network of carotenoid enhancement by CsERF061, induced by ethylene, which will be useful for manipulating carotenoid accumulation in citrus and other plants.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qingyuan Dang ◽  
Haiyun Sha ◽  
Jiyun Nie ◽  
Yongzhang Wang ◽  
Yongbing Yuan ◽  
...  

AbstractColor is an important trait for horticultural crops. Carotenoids are one of the main pigments for coloration and have important implications for photosynthesis in plants and benefits for human health. Here, we identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor named MdAP2-34 in apple (Malus domestica Borkh.). MdAP2-34 expression exhibited a close correlation with carotenoid content in ‘Benin Shogun’ and ‘Yanfu 3’ fruit flesh. MdAP2-34 promotes carotenoid accumulation in MdAP2-34-OVX transgenic apple calli and fruits by participating in the carotenoid biosynthesis pathway. The major carotenoid contents of phytoene and β-carotene were much higher in overexpressing MdAP2-34 transgenic calli and fruit skin, yet the predominant compound of lutein showed no obvious difference, indicating that MdAP2-34 regulates phytoene and β-carotene accumulation but not lutein. MdPSY2-1 (phytoene synthase 2) is a major gene in the carotenoid biosynthesis pathway in apple fruit, and the MdPSY2-1 gene is directly bound and transcriptionally activated by MdAP2-34. In addition, overexpressing MdPSY2-1 in apple calli mainly increases phytoene and total carotenoid contents. Our findings will advance and extend our understanding of the complex molecular mechanisms of carotenoid biosynthesis in apple, and this research is valuable for accelerating the apple breeding process.


2006 ◽  
Vol 20 (4) ◽  
pp. 735-748 ◽  
Author(s):  
Samuel Seoane ◽  
Roman Perez-Fernandez

Abstract Pituitary transcription factor-1 (Pit-1) plays a key role in cell differentiation during organogenesis of the anterior pituitary, and as a transcriptional activator for the pituitary GH and prolactin genes. However, Pit-1 is also expressed in nonpituitary cell types and tissues. In breast tumors, Pit-1 mRNA and protein levels are increased with respect to normal breast, and in MCF-7 human breast adenocarcinoma cells, Pit-1 increases GH secretion and cell proliferation. We report here that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] administration to MCF-7 cells induces a significant decrease in Pit-1 mRNA and protein levels. By deletion analyses, we mapped a region (located between −147 and −171 bp from the transcription start site of the Pit-1 gene) that is sufficient for the repressive response to 1,25-(OH)2D3. Gel mobility shift and chromatin immunoprecipitation assays confirmed the direct interaction between the vitamin D receptor (VDR) as homodimer (without the retinoid X receptor), and the Pit-1 promoter, supporting the view that Pit-1 is a direct transcriptional target of VDR. Our data also indicate that recruitment of histone deacetylase 1 is involved in this repressive effect. This ligand-dependent Pit-1 gene inhibition by VDR in the absence of the retinoid X receptor seems to indicate a new mechanism of transcriptional repression by 1,25-(OH)2D3.


2021 ◽  
Author(s):  
Songya Ma ◽  
Huixia Li ◽  
Lan Wang ◽  
Baiyun Li ◽  
Zhengyang Wang ◽  
...  

Abstract Ascorbate (Asc) is an important antioxidant in plants and humans that plays key roles in various physiological processes. Understanding the regulation of Asc content in fruit plants is important for improving plant resiliency and optimizing Asc in food. Here, we found that both the transcript level and protein abundance of Asc Mannose pathway Regulator 1 Like 1 (MdAMR1L1) was negatively associated with Asc levels during the development of apple (Malus × domestica) fruit. The overexpression or silencing of MdAMR1L1 in apple indicated that MdAMR1L1 negatively regulated Asc levels. However, in the leaves of MdAMR1L1-overexpressing apple lines, the transcript levels of the Asc synthesis gene Guanosine diphosphate-mannose pyrophosphorylase MdGMP1 were increased, while its protein levels and enzyme activity were reduced. This occurred because the MdAMR1L1 protein interacted with MdGMP1 and promoted its degradation via the ubiquitination pathway to inhibit Asc synthesis at the post-translational level. MdERF98, an apple ethylene response factor, whose transcription was modulated by Asc level, is directly bound to the promoter of MdGMP1 to promote the transcription of MdGMP1. These findings provide insights into the regulatory mechanism of Asc biosynthesis in apples and revealed potential opportunities to improve fruit Asc levels.


2019 ◽  
Vol 9 (5) ◽  
pp. 251-257
Author(s):  
Rashidi Othman ◽  
Norazian Mohd. Hassan   ◽  
Ainaa Eliah Abu Bakar ◽  
Nur Hidayah Noh   ◽  
Nurrulhidayah Ahmad Fadzillah   ◽  
...  

All carotenoids originate from a single, common precursor, phytoene. The colour of carotenoids is determinedby desaturation, isomerization, cyclization, hydroxylation and epoxidation of the 40-carbon phytoene. The conjugated double-bond structure and nature of end ring groups confer on the carotenoids properties such as colour and antioxidant activity. Algae may become major sources of carotenoids but the extent of environmental stress and genetic influences on algae carotenoid biosynthesis are poorly understood. Carotenoid biosynthesis can be influenced by many aspects and is liable to geometric isomerization with the existence of oxygen, light and heat which affect the colour degradation and oxidation. Therefore, in this study carotenoid biogenesis is investigated in cell culture of Chlorella fusca as a potential model system for rapid initiation, and extraction of carotenoids by providing stringent control of genetic, developmental and environmental factors. The value of this experimental system for investigating key factors controlling the carotenoid accumulation is then tested by assessing the effects of environmental variables, such as drought stress, light intensity, nutrient strength and media formulation on carotenoid accumulation. Our findings revealed that the conversion of violaxanthin to lutein is due to irradiance stress condition, nutrient strength as well as drought stress. As a result, manipulation of environmental variables will up-regulate lutein concentration. This reaction will restrict the supply of precursors for ABA biosynthesis and the algae cell culture responds by increasing carotenogenic metabolic flux to compensate for this restriction. In conclusion, selecting the appropriate algae species for the appropriate environmental conditions is not only important for yield production, but also for nutritional value quality of carotenoid.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 448 ◽  
Author(s):  
Pengjun Lu ◽  
Ruqian Wang ◽  
Changqing Zhu ◽  
Xiumin Fu ◽  
Shasha Wang ◽  
...  

Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of plastid development during fruit ripening was carried out. In peel cells, chloroplasts turned into smaller chromoplasts in both cultivars, and the quantity of plastids in LYQ increased by one-half during fruit ripening. The average number of chromoplasts per peel cell in fully ripe fruit was similar between the two cultivars, but LYQ peel cell plastids were 20% larger and had a higher colour density, associated with the presence of larger plastoglobules. In flesh cells, chromoplasts could be observed only in LYQ during the middle and late stages of ripening, and the quantity on a per-cell basis was higher than that in peel cells, but the size of chromoplasts was smaller. It was concluded that chromoplasts are derived from the direct conversion of chloroplasts to chromoplasts in the peel, and from de novo differentiation of proplastids into chromoplasts in flesh. The relationship between plastid development and carotenoid accumulation is discussed.


2018 ◽  
Vol 314 (1) ◽  
pp. G14-G21 ◽  
Author(s):  
Saminathan Muthusamy ◽  
Jong Jin Jeong ◽  
Ming Cheng ◽  
Jessica A. Bonzo ◽  
Anoop Kumar ◽  
...  

Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.


2021 ◽  
Vol 922 (1) ◽  
pp. 012061
Author(s):  
C D Iskandar ◽  
Zainuddin

Abstract This study aims to determine the amount of protein content in Aceh cattle beef in the quadriceps muscle (chuck) and to find out the best storage between cold and frozen to protein levels of beef. This study used 10 samples of Aceh cattle beef parts of the quadriceps (chuck) which were divided into 3 treatment groups, group I meat was treated in fresh condition, Group II meat was treated in cold at 8 °C and Group III meat will be treated in frozen at -19 °C. Protein content in meat was analysed by the Independent Samples Test. The results showed that the amount of Aceh beef protein in the quadriceps (chuck) in fresh; 15, 47%, cold 10, 20% and frozen; 9, 97. It was concluded that storing meat in cold and frozen ways is affect the protein content. Frozen meat storage is better to keep protein content than Cold meat storage.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3263-3274 ◽  
Author(s):  
G.M. Souza ◽  
A.M. da Silva ◽  
A. Kuspa

When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a developmental program that ensures survival. The YakA protein kinase governs this transition by regulating the cell cycle, repressing growth-phase genes and inducing developmental genes. YakA mutants have a shortened cell cycle and do not initiate development. A suppressor of yakA that reverses most of the developmental defects of yakA- cells, but none of their growth defects was identified. The inactivated gene, pufA, encodes a member of the Puf protein family of translational regulators. Upon starvation, pufA- cells develop precociously and overexpress developmentally important proteins, including the catalytic subunit of cAMP-dependent protein kinase, PKA-C. Gel mobility-shift assays using a 200-base segment of PKA-C's mRNA as a probe reveals a complex with wild-type cell extracts, but not with pufA- cell extracts, suggesting the presence of a potential PufA recognition element in the PKA-C mRNA. PKA-C protein levels are low at the times of development when this complex is detectable, whereas when the complex is undetectable PKA-C levels are high. There is also an inverse relationship between PufA and PKA-C protein levels at all times of development in every mutant tested. Furthermore, expression of the putative PufA recognition elements in wild-type cells causes precocious aggregation and PKA-C overexpression, phenocopying a pufA mutation. Finally, YakA function is required for the decline of PufA protein and mRNA levels in the first 4 hours of development. We propose that PufA is a translational regulator that directly controls PKA-C synthesis and that YakA regulates the initiation of development by inhibiting the expression of PufA. Our work also suggests that Puf protein translational regulation evolved prior to the radiation of metazoan species.


2008 ◽  
Vol 87 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Y. Wittrant ◽  
B. Sriniketan Bhandari ◽  
H. Abboud ◽  
N. Benson ◽  
K. Woodruff ◽  
...  

Macrophage colony-stimulating factor (CSF-1) is a key regulatory cytokine for amelogenesis, and ameloblasts synthesize CSF-1. We hypothesized that PDGF stimulates DNA synthesis and regulates CSF-1 in these cells. We determined the effect of PDGF on CSF-1 expression using MEOE-3M ameloblasts as a model. By RT-PCR, MEOE-3M expressed PDGFRs and PDGF A- and B-chain mRNAs. PDGF-BB increased DNA synthesis and up-regulated CSF-1 mRNA and protein in MEOE-3M. Cells transfected with CSF-1 promoter deletion constructs were analyzed. A PDGF-responsive region between −1.7 and −0.795 kb, containing a consensus Pea3 binding motif, was identified. Electrophoretic mobility shift assay (EMSA) showed that PDGF-BB stimulated protein binding to this motif that was inhibited in the presence of anti-Pea3 antibody. Analysis of these data provides the first evidence that PDGF-BB is a mitogen for MEOE-3M and increases CSF-1 protein levels, predominantly by transcription. Elucidation of the cellular pathways that control CSF-1 expression may provide novel strategies for the regulation of enamel matrix formation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Grzegorz Sulkowski ◽  
Beata Dąbrowska-Bouta ◽  
Lidia Strużyńska

The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20–25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.


Sign in / Sign up

Export Citation Format

Share Document