scholarly journals Plant iron nutrition in the long road from soil to seeds

Author(s):  
Irene Murgia ◽  
Francesca Marzorati ◽  
Gianpiero Vigani ◽  
Piero Morandini

Abstract Iron (Fe) is an essential plant micronutrient since photosynthesis, respiration, the scavenging of reactive oxygen species and many other cellular processes depend on adequate Fe levels. Nonetheless, non-complexed Fe ions can be dangerous for cells, as they can act as a pro-oxidant. Therefore, plants possess a complex homeostatic control system for safely taking up Fe from the soil, transporting it to the various cellular destinations and for its subcellular compartmentalization. At the end of the plant’s life cycle, maturing seeds are loaded with the required amount of Fe for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed loading with Fe and take into account the Fe metabolism in wild crops’ relatives. These aspects of plant Fe nutrition can represent promising avenues for a better comprehension of the long road of Fe from soil to seeds.

2019 ◽  
Vol 9 (11) ◽  
pp. 2203 ◽  
Author(s):  
Muhammad Ali ◽  
Sikandar Hayat ◽  
Husain Ahmad ◽  
Muhammad Imran Ghani ◽  
Bakht Amin ◽  
...  

The current study was aimed to evaluate the seed priming potential of AGE (aqueous garlic extracts) to enhance seed germination and early seedling growth of eggplant. Different concentrations (100, 200, and 300 µg mL−1) of AGE were evaluated along with methyl jasmonate (MeJA) and salicylic acid (SA), plant growth regulators with reported seed priming potential whereas, water was taken as a control treatment. Eggplant seeds were primed for 4-, 8-, and 12-h and seed germination traits such germination rate index, germination percentage, mean germination time, and early seedling growth traits such as fresh and dry weights, root, and shoot lengths were observed. Moreover, plant antioxidant enzymes activities and lipid peroxidation levels, soluble protein contents and reactive oxygen species were monitored to establish the stimulatory/inhibitory effects of the treatments. Our results indicate priming potential of AGE, SA, and MeJA to enhance seed germination and early seedling growth in eggplant and the effects were obvious in various morphological and physiological traits. Seed priming significantly altered the antioxidant enzymes activities such as superoxide dismutase (SOD), and peroxidase (POD) with alteration in the reactive oxygen species (ROS). Interestingly, priming duration also affected the bioactivity of these chemicals because seed priming with 300 µg mL−1 AGE for 4 h had a positive influence, however, prolonged exposure to the same concentration inhibited the seed germination process and induced oxidative stress on the seedlings with elevated levels of malondialdehyde (MDA) content. We propose AGE seed priming as a bio-stimulant to enhance seed germination and early seedling growth in eggplant, and the results hence lay the foundation for the preparation of garlic-based compounds to improve vegetables production under plastic tunnels and greenhouse production units.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4300-4300
Author(s):  
Serge Côté ◽  
Nathalie Dussault ◽  
Carl Simard

Abstract Hematopoietic cells mature in the bone marrow under the control of a diversity of growth factors and the influence of various cell types producing superoxide and other reactive oxygen species (ROS). As ROS may regulate activities of redox-sensitive enzymes implicated in a wide range of cellular processes, we have exposed the human megakaryocytic cell line M-07e to hydrogen peroxide (H2O2) at concentrations that increased intracellular ROS and examined whether expression of the megakaryocytic programme could be enhanced. The growth-factor dependent M-07e cells display surface markers characteristic of both early myeloid progenitors and more committed members of the magakaryocyte (Mk) lineage, such as glycoproteins GPIIb-IIIa (CD41) and GPIb (CD42). H2O2 significantly reduced cell proliferation without affecting viability. After 4 days of exposure to this reagent, expression of the early Mk marker CD41 was 1.2 times higher than that of control cells. Although no change in the expression of the late Mk marker CD42 was detected, exposure to H2O2 was found to increase the incidence of multinucleate cells, polyploidy and abnormal microtubule organising centre numbers. Investigation of this phenomenon on synchronized M-07e cells revealed that H2O2 arrested cytokinesis at a late stage and that some nuclei were still able to incorporate bromodeoxyuridine (BrdU). Cell division was similarly impaired when M-07e cells were either exposed to botulin toxin C3 transferase or Y-27362 inhibitor, suggesting that H2O2 treatments affected members of the Rho family of small GTP-binding proteins and/or their effectors. Together, these findings indicate that endoreplication in Mk may be linked to changes in the cellular redox state of these cells and support the concept that differentiation and polyploidization are independently regulated events.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4710
Author(s):  
Jan Čapek ◽  
Tomáš Roušar

The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.


2015 ◽  
Vol 9 (5) ◽  
pp. 3-17 ◽  
Author(s):  
Abouzar Abouzari ◽  
Barat Ali Fakheri

 Reactive oxygen species (ROS) are a by-product of normal cell metabolism in plants; however, the balance between production and elimination is disturbed under stress conditions. Several reactive oxygen species are continuously produced in plants as secondary products of aerobic metabolism. Depending on the source of the ROS species, some of them are highly toxic. Plants cellular rapidly use various enzymatic and nonenzymatic mechanisms For detoxify ROS species. Enhanced level of ROS and absence of detoxify systems, can cause damage to biomolecules such as lipids, proteins and DNA and eventually cause to cell death. Despite their destructive activity, they are second messengers in a variety of cellular processes, including conferment of tolerance to various environmental stresses. This review paper describes the Variety of Reactive oxygen species, sources and roles of ROS in plants.DOI: http://dx.doi.org/10.3126/ijls.v9i5.12699


2005 ◽  
Vol 49 (12) ◽  
pp. 5123-5126 ◽  
Author(s):  
Nahoko Uchiyama ◽  
Zakayi Kabututu ◽  
Bruno K. Kubata ◽  
Fumiyuki Kiuchi ◽  
Michiho Ito ◽  
...  

ABSTRACT A novel potent trypanocidal diterpene, komaroviquinone, was reduced by Trypanosoma cruzi old yellow enzyme (TcOYE) to its semiquinone radical. The reductase activity in trypanosome lysates was completely immunoabsorbed by anti-TcOYE antibody. Since TcOYE is expressed throughout the T. cruzi life cycle, komaroviquinone is an interesting candidate for developing new antichagasic drugs.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 673
Author(s):  
Guillermo Zalba

Low concentration of reactive oxygen species (ROS) is essential for physiological cellular processes [...]


Sign in / Sign up

Export Citation Format

Share Document