scholarly journals Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue

2016 ◽  
Vol 67 (18) ◽  
pp. 5313-5324 ◽  
Author(s):  
Jin-Ho Kang ◽  
Marcelo L Campos ◽  
Starla Zemelis-Durfee ◽  
Jameel M Al-Haddad ◽  
A Daniel Jones ◽  
...  

Abstract Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta. Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290. The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.

Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 930
Author(s):  
Xu Yu ◽  
Xiwu Qi ◽  
Shumin Li ◽  
Hailing Fang ◽  
Yang Bai ◽  
...  

Light is a key environmental aspect that regulates secondary metabolic synthesis. The essential oil produced in mint (Mentha canadensis L.) leaves is used widely in the aromatics industry and in medicine. Under low-light treatment, significant reductions in peltate glandular trichome densities were observed. GC-MS analysis showed dramatically reduced essential oil and menthol contents. Light affected the peltate glandular trichomes’ development and essential oil yield production. However, the underlying mechanisms of this regulation were elusive. To identify the critical genes during light-regulated changes in oil content, following a 24 h darkness treatment and a 24 h recovery light treatment, leaves were collected for transcriptome analysis. A total of 95,579 unigenes were obtained, with an average length of 754 bp. About 56.58% of the unigenes were annotated using four public protein databases: 10,977 differentially expressed genes (DEGs) were found to be involved in the light signaling pathway and monoterpene synthesis pathway. Most of the TPs showed a similar expression pattern: downregulation after darkness treatment and upregulation after the return of light. In addition, the genes involved in the light signal transduction pathway were analyzed. A series of responsive transcription factors (TFs) were identified and could be used in metabolic engineering as an effective strategy for increasing essential oil yields.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peina Zhou ◽  
Mengjiao Yin ◽  
Shilin Dai ◽  
Ke Bao ◽  
Chenglin Song ◽  
...  

Abstract Background Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. Results Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC–MS and GC–MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. Conclusions The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


2013 ◽  
Vol 11 (11) ◽  
pp. 1860-1873 ◽  
Author(s):  
Magdalena Nowacka ◽  
Łukasz Klapiszewski ◽  
Małgorzata Norman ◽  
Teofil Jesionowski

AbstractAdvanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional.


2020 ◽  
Author(s):  
Jorgen Hoyer ◽  
Morsal Saba ◽  
Daniel Dondorp ◽  
Kushal Kolar ◽  
Riccardo Esposito ◽  
...  

AbstractCalcium is a ubiquitous and versatile second messenger that plays a central role in the development and function of a wide range of cell types, tissues and organs. Despite significant recent progress in the understanding of calcium (Ca2+) signalling in organs such as the developing and adult brain, we have relatively little knowledge of the contribution of Ca2+ to the development of tubes, structures widely present in multicellular organisms. Here we image Ca2+ dynamics in the developing notochord of Ciona intestinalis. We show that notochord cells exhibit distinct Ca2+ dynamics during specific morphogenetic events such as cell intercalation, cell elongation and tubulogenesis. We used an optogenetically controlled Ca2+ actuator to show that sequestration of Ca2+ results in defective notochord cell intercalation, and pharmacological inhibition to reveal that stretch-activated ion channels (SACs), inositol triphosphate receptor (IP3R) signalling, Store Operated Calcium Entry (SOCE), Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and gap junctions are required for regulating notochord Ca2+ activity during tubulogenesis. Cytoskeletal rearrangements drive the cell shape changes that accompany tubulogenesis. In line with this, we show that Ca2+ signalling modulates reorganization of the cytoskeletal network across the morphogenetic events leading up to and during tubulogenesis of the notochord. We additionally demonstrate that perturbation of the actin cytoskeleton drastically remodels Ca2+ dynamics, suggesting a feedback mechanism between actin dynamics and Ca2+ signalling during notochord development. This work provides a framework to quantitatively define how Ca2+ signalling regulates tubulogenesis using the notochord as model organ, a defining structure of all chordates.


1997 ◽  
Vol 122 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Richard Grazzini ◽  
Donald Walters ◽  
Jody Harmon ◽  
David J. Hesk ◽  
Diana Cox-Foster ◽  
...  

Diploid zonal geraniums (Pelargonium ×hortorum) are able to resist attack by small arthropod pests such as the two-spotted spider mite (Tetranychus urticae Koch) when exudate produced by tall glandular trichomes contains a high percentage of ω5-unsaturated anacardic acids. Trichomes of susceptible plants exude primarily saturated anacardic acids. Inbred mite-resistant and -susceptible geraniums were reciprocally crossed and the F1, F2, and backcross generations were examined for anacardic acid composition and trichome density. Selected F2 plants were bioassayed for resistance to two-spotted spider mites. High concentrations of ω5-unsaturated anacardic acids in resistant plants are conditioned by a single dominant allele. We propose that inheritance of tall glandular trichome density can be controlled by a small number of loci (possibly as few as one) exhibiting codominance. F2, with low densities of tall glandular trichomes and producing ω5-unsaturated anacardic acids, displayed effective resistance to two-spotted spider mites as measured by mite mortality and fecundity. A genetic model for the biosynthesis of anacardic acids is proposed.


2004 ◽  
Vol 31 (3) ◽  
pp. 267 ◽  
Author(s):  
James L. Smith II ◽  
J. Daniel Hare

Plant trichomes commonly serve a role in mechanical and chemical defence against herbivores, but may also have the potential to alter physiology by reducing the amount of light absorbed by leaves, lowering temperatures, and reducing water loss. Populations of Datura wrightii Regel in southern California produce 'sticky' plants with glandular trichomes and 'velvety' plants bearing non-glandular trichomes. Because stickiness is inherited as a dominant Mendelian trait, and the proportions of sticky plants vary among populations with the moisture availability of their environment, there may be some ecophysiological differences between trichome types that contribute to their ability to survive in a particular geographic location. To examine the possible physiological significance of trichome variation, we measured the spectral properties, midday gas-exchange rates, and water potentials of D. wrightii leaves from sticky and velvety plants growing in a field experiment. The differences in leaf reflectance (0.9%) and absorptance (1.3%) of photosynthetically active radiation (PAR) between trichome types are too small to have any direct physiologically significant effect. Simulations of leaf temperatures based on the difference in leaf absorptances reveal that leaf temperature would be no more than 1°C lower in velvety compared to sticky plants. Gas-exchange measurements revealed no significant difference between types in their transpiration rates or stomatal conductances. In this case, trichome variation may be more important to plant defenses than to physiology.


2013 ◽  
Vol 41 (2) ◽  
pp. 163-167 ◽  
Author(s):  
MS Islam ◽  
HC Mohanta ◽  
MR Ismail ◽  
MY Rafii ◽  
MA Malek

Nine traits of 11 cherry tomato (Solanum lycopersicum L.) var. cerasiforme (Dunal) A. Gray) inbred lines exhibited a wide range of genetic variability. High geno- and phenotypic coefficients of variation were obtained for individual fruit weight (68.16 and 74.23%, respectively) followed by number of fruits/plant (58.8 and 68.34%, respectively). High estimates of heritability, genetic advance and genotypic coefficient of variation for the traits of individual fruit weight, number of fruits and clusters/plant were controlled by additive gene action indicating the possibility of selection to improve these characters. Fruit yield/plant showed low heritability along with low genetic advance and did not show significant and positive correlation with the remaining characters. It indicates that improvement of high yield through selection is difficult, rather hybridization can be effective for improving the fruit yield/plant. Among the lines, CH154 produced the highest number of fruits/plant (291) and highest fruit yield (1.89 kg/plant and 63.4 t/ha) and can be selected for cultivation under Bangladesh condition. DOI: http://dx.doi.org/10.3329/bjb.v41i2.13443 Bangladesh J. Bot. 41(2): 163-167, 2012 (December)


Phytotaxa ◽  
2019 ◽  
Vol 395 (1) ◽  
pp. 1-16 ◽  
Author(s):  
LENKA RAABOVÁ ◽  
LUBOMIR KOVACIK ◽  
JOSEF ELSTER ◽  
OTAKAR STRUNECKÝ

Very thin filamentous cyanobacteria are ubiquitous in a wide range of environments. For many years they were traditionally studied according to their morphological properties only. With the introduction of additional taxonomic methods (cytomorphological analyses, molecular sequencing, exact ecological studies, better data about phytogeographical distribution), traditional genera such as Leptolyngbya and Phormidium were found to be polyphyletic. Phormidesmis belonged to a newly formed genus that was supposed to explain the variability of such very thin simple filamentous cyanobacteria. However, even after definition of Phormidesmis based on distinct cytomorphological and phylogenetic traits, the variability within this genus remained unresolved. Here we analyzed 26 Phormidesmis strains to describe the variability within this genus, classified two new species (P. arctica and P. communis) and transferred Leptolyngbya nigrescens into P. nigrescens. A tabular review of Phormidesmis species is included. The diacritical features of all these species are: width up to 1–4 µm, barrel-shaped cells, which can be shorter or slightly longer than wide, with apparent constrictions at the cross-walls. Our study shows that Phormidesmis is a morphologically and genetically well-defined genus with a global distribution. A newly described genus Leptodesmis has significant morphological similarities both with Phormidesmis and Leptolyngbya, however with intermediate phylogenetic position with significant divergence in 16S rRNA gene. Leptodesmis is cryptic both to Phormidesmis and Leptolyngbya. In the initial part of the life cycle resembles Leptolyngbya, the appearance of older trichomes change to Phormidesmis like morphology.


Sign in / Sign up

Export Citation Format

Share Document