Experience and design: Bringing in the brain

2021 ◽  
pp. 571-642
Author(s):  
Michael A. Arbib

The IBSEN model of Imagination in Brain Systems for Episodes and Navigation explores how the architect’s experience is brought to bear in the design of architecture by building on the VISIONS model of understanding a visual scene and the TAM-WGM model of navigation. IBSEN develops the idea that a building provides both views from various viewpoints and places where particular experiences can be felt, and actions can be performed. For this, the design must support a variety of scripts for both practical and contemplative action and the cognitive maps that relate places for them. Nodes from different maps may be combined as scripts are harmonized with respect to a specific embedding of places in three-dimensional space. The chapter examines the role of the hippocampus in episodic memory and imagination, and observes that memory and imagination, episodic or not, are construction processes. During design, long-term working memory links internal and external memory systems, providing priority access to (but not only to) memory fragments that have proved relevant to the current design process. The designer in some sense “inverts” imagined experiences and behaviors of users of the forthcoming building. As the book ends, the author notes that we are only at the beginning of new collaborative studies that take cog/neuroscience out of the lab and into the building and the street.

2004 ◽  
pp. 406-412
Author(s):  
Paul Okunieff ◽  
Michael C. Schell ◽  
Russell Ruo ◽  
E. Ronald Hale ◽  
Walter G. O'Dell ◽  
...  

✓ The role of radiosurgery in the treatment of patients with advanced-stage metastatic disease is currently under debate. Previous randomized studies have not consistently supported the use of radiosurgery to treat patients with numbers of brain metastases. In negative-results studies, however, intracranial tumor control was high but extracranial disease progressed; thus, patient survival was not greatly affected, although neurocognitive function was generally maintained until death. Because the future promises improved systemic (extracranial) therapy, the successful control of brain disease is that much more crucial. Thus, for selected patients with multiple metastases to the brain who remain in good neurological condition, aggressive lesion-targeting radiosurgery should be very useful. Although a major limitation to success of this therapy is the lack of control of extracranial disease in most patients, it is clear that well-designed, aggressive treatment substantially decreases the progression of brain metastases and also improves neurocognitive survival. The authors present the management and a methodology for rational treatment of a patient with breast cancer who has harbored 24 brain metastases during a 3-year period.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 767
Author(s):  
Courtney Davis ◽  
Sean I. Savitz ◽  
Nikunj Satani

Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.


CNS Spectrums ◽  
2004 ◽  
Vol 9 (7) ◽  
pp. 523-529 ◽  
Author(s):  
Palmiero Monteleone ◽  
Antonio DiLieto ◽  
Eloisa Castaldo ◽  
Mario Maj

AbstractLeptin is an adipocyte-derived hormone, which is involved predominantly in the long-term regulation of body weight and energy balance by acting as a hunger suppressant signal to the brain. Leptin is also involved in the modulation of reproduction, immune function, physical activity, and some endogenous endocrine axes. Since anorexia nervosa (AN) and bulimia nervosa (BN) are characterized by abnormal eating behaviors, dysregulation of endogenous endocrine axes, alterations of reproductive and immune functions, and increased physical activity, extensive research has been carried out in the last decade in order to ascertain a role of this hormone in the pathophysiology of these syndromes. In this article, we review the available data on leptin physiology in patients with eating disorders. These data support the idea that leptin is not directly involved in the etiology of AN or BN. However, malnutrition-induced alterations in its physiology may contribute to the genesis and/or the maintenance of some clinical manifestations of AN and BN and may have an impact on the prognosis of AN.


2021 ◽  
Vol 28 ◽  
Author(s):  
Lucas Alexandre Santos Marzano ◽  
Fabyolla Lúcia Macedo de Castro ◽  
Caroline Amaral Machado ◽  
João Luís Vieira Monteiro de Barros ◽  
Thiago Macedo e Cordeiro ◽  
...  

: Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI’s long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.


2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


STEMedicine ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. e43 ◽  
Author(s):  
Federico Iseppon ◽  
Manuel Arcangeletti

Pain afflicts billions of people worldwide, who suffer especially from long-term chronic pain. This gruelling condition affects the nervous system at all levels: from the brain to the spinal cord, the Dorsal Root Ganglia (DRG) and the peripheral fibres innervating the skin. The nature of the different molecular and cellular components of the somatosensory modalities, as well as the complexity of the peripheral and central circuitry are yet poorly understood. Light-based techniques such as optogenetics, in concert with the recent advances in single-cell genetic profiling, can help to elucidate the role of diverse neuronal sub-populations in the encoding of different sensory and painful stimuli by switching these neurons on and off via optically active proteins, namely opsins.  Recently, photopharmacology has emerged from the efforts made to advance optogenetics. The introduction of azo-benzene-based light-sensitive molecular switches has been applied to a wide variety of molecular targets, from ion channels and receptors to transporters, enzymes and many more, some of which are paramount for pain research and therapy. In this Review, we summarise the recent advances in the fields of optogenetics and photopharmacology and we discuss the use of light-based techniques for the study of acute and chronic pain physiology, as well as their potential for future therapeutic use to improve pain treatment.


2015 ◽  
Vol 148 (4) ◽  
pp. S-384
Author(s):  
Elise L. Ma ◽  
Allen Smith ◽  
Neemesh Desai ◽  
Alan Faden ◽  
Terez Shea-Donohue

2020 ◽  
pp. 127-154
Author(s):  
Daeyeol Lee

Long-lasting effects of brief sensory experience must be mediated by long-term changes in the strength of connections between neurons in the brain. This phenomenon is known as synaptic plasticity, and the physical location of such change is referred to as the engram. This chapter illustrates how multiple learning and memory systems might be implemented in different anatomical modules of the brain and what role dopamine plays in learning. Most of these neurobiological and behavioral observations can be accounted for by reinforcement learning theory. The goal of reinforcement is to understand how utilities must be altered by experience so that rational choices based on the utility functions can result in the most desirable outcomes through learning.


2006 ◽  
Vol 361 (1471) ◽  
pp. 1159-1185 ◽  
Author(s):  
B Beck

Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db / db mouse, or at the peptide level, as in ob / ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka–Long–Evans–Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an overactive NPY system (increased mRNA expression in the ARC associated with an upregulation of the receptors) is characteristic of rats or rodent strains sensitive to dietary-induced obesity. Finally, NPY appears to play an important role in body weight and feeding regulation, and while it does not constitute the only target for drug treatment of obesity, it may nevertheless provide a useful target in conjunction with others.


Sign in / Sign up

Export Citation Format

Share Document