scholarly journals Evolution of Proteins and Gene Expression Levels are Coupled in Drosophila and are Independently Associated with mRNA Abundance, Protein Length, and Number of Protein-Protein Interactions

2005 ◽  
Vol 22 (5) ◽  
pp. 1345-1354 ◽  
Author(s):  
B. Lemos
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1599-1599
Author(s):  
Jacqueline E. Payton ◽  
Guido Marcucci ◽  
Michael D. Radmacher ◽  
Kati Maharry ◽  
Christian Langer ◽  
...  

Abstract Abstract 1599 Poster Board I-625 The greatest obstacle to routine clinical testing of gene expression levels has been the lack of reproducibility of currently used methodologies, such as quantitative reverse transcriptase PCR (qRT-PCR) and microarray expression profiling. While these assays are useful for retrospective analyses of batched samples, they cannot be used for upfront evaluation of individual patients (pts) for molecular risk and treatment assignment. To overcome this barrier, we tested a recently developed, high throughput, PCR-independent, digital quantification technology, the nCounter system (Nanostring® Technologies). This system counts individual mRNA molecules, rather than measuring non-linear fluorescence generated by PCR-amplified targets (eg qRT-PCR). Using 72 AML samples and spike-in controls, we and collaborators demonstrated that the nCounter system is highly reproducible, sensitive, and accurate to femtomolar concentrations (Payton, J, et al. JCI 119:1714-26; Geiss, G, et al. Nat Biotech 26:317-25). Here we validated this technology using an independent set of 101 pts with a diagnosis of de novo cytogenetically normal AML. At diagnosis, pts presented with FAB subtypes M0, M1, M2, M4, M5(A, B), had a median age of 43 years (range 19-59), median white blood count of 28.5× 103/μL (range 1.4-273.0), median of 69% BM blasts (range 22-95) and median of 65% PB blasts (range 0-97). Paired BM and PB specimens were available for 27 pts; blast percentages were ≥ 20% for all paired specimens. We used the nCounter system to measure mRNA abundance (‘counts‘) of 27 genes whose expression correlates with clinical and/or pathological criteria, including 3 genes associated with prognosis (BAALC, ERG, MN1), and control/housekeeping genes (GAPDH, ABL, Actin). Briefly, mononuclear cells from pretreatment BM or PB were enriched on Ficoll-Hypaque gradients and RNA was isolated using Trizol reagent; 100ng of total RNA was assayed in triplicate by nCounter according to the manufacturer's protocols. The nCounter results demonstrated substantial reproducibility, with a median CV [coefficient of variation, (standard deviation/mean *100)] <6% across replicates. In addition, the nCounter counts for BAALC, ERG, and MN1 normalized to ABL were highly correlated with the ABL-normalized qRT-PCR results. Significant correlation was observed for all 3 genes, with the following Spearman correlation coefficients: BAALC r = 0.9, ERG r = 0.7, and MN1 r = 0.8 (all p<0.001). Correlation of BAALC, ERG, and MN1 nCounter counts with the expression levels measured by Affymetrix® HG-U133 plus 2.0 microarrays were also tested. Summary measures of microarray gene expression levels were computed using the Robust Multichip Average method, which incorporates quantile normalization of arrays. Significant correlation of nCounter and microarray results was observed, with Spearman correlation coefficients as follows: BAALC r = 0.96, ERG r = 0.8, and MN1 r = 0.8 (all p<0.001). For the 27 sets of paired samples, nCounter results for BM and PB were also significantly correlated, with Spearman correlation coefficients of BAALC r = 0.9, ERG r = 0.7, and MN1 r = 0.6 (all p<0.001). Because RNA quickly degrades if not promptly isolated from PB or BM, and degraded RNA often fails qRT-PCR assays, we determined whether RNA quality affected nCounter performance by assessment of standard quality parameters, including ratio of absorbance at 260 and 280 nm (260:280, a measure of RNA purity, acceptable 1.8-2.0) and RNA Quality Index (RQI, which assesses 18S:28S rRNA ratio and RNA degradation, 7-10 acceptable). Quality ranged from very high, with 260:280 ratios >1.9 and RQI scores >9, to relatively low, with 260:280 ratios <1.8, RQI scores <4, and degraded RNA visible on the Experion® RNA chip. Such a range of RNA quality is consistent with our experience with clinical specimens, which may be delayed in transit to the laboratory. Nevertheless, fewer than 3% of nCounter assays failed to generate acceptable results (11/393 assays), likely because no PCR step is required. Our results show that the nCounter system is a rapid, relatively inexpensive ($0.72/assay), and highly reproducible methodology that will be very useful for routine diagnostic testing of prognostic gene expression and upfront molecular-risk assessment for treatment guidance in AML pts. Disclosures No relevant conflicts of interest to declare.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 109 ◽  
Author(s):  
Marjolein J. Peters ◽  
Yolande F.M. Ramos ◽  
Wouter den Hollander ◽  
Dieuwke Schiphof ◽  
Albert Hofman ◽  
...  

Objective: To identify molecular biomarkers for early knee osteoarthritis (OA), we examined whether joint effusion in the knee associated with different gene expression levels in the circulation.Materials and Methods: Joint effusion grades measured with magnetic resonance (MR) imaging and gene expression levels in blood were determined in women of the Rotterdam Study (N=135) and GARP (N=98). Associations were examined using linear regression analyses, adjusted for age, fasting status, RNA quality, technical batch effects, blood cell counts, and BMI. To investigate enriched pathways and protein-protein interactions, we used the DAVID and STRING webtools.Results: In a meta-analysis, we identified 257 probes mapping to 189 unique genes in blood that were nominally significantly associated with joint effusion grades in the knee. Several compelling genes were identified such as C1orf38 and NFATC1. Significantly enriched biological pathways were: response to stress, gene expression, negative regulation of intracellular signal transduction, and antigen processing and presentation of exogenous pathways.Conclusion: Meta-analyses and subsequent enriched biological pathways resulted in interesting candidate genes associated with joint effusion that require further characterization. Associations were not transcriptome-wide significant most likely due to limited power. Additional studies are required to replicate our findings in more samples, which will greatly help in understanding the pathophysiology of OA and its relation to inflammation, and may result in biomarkers urgently needed to diagnose OA at an early stage.


2021 ◽  
Author(s):  
Siyu Tian ◽  
Shuming Chen ◽  
Yongyi Feng ◽  
Yong Li

Abstract Background: Psoriasis is a common cutaneous disease with many characteristics including inflammation and aberrant keratinocyte proliferation. However, the pathogenesis of psoriasis is not completely clear. Methods: We explore the differentially expressed genes (DEGs) in psoriasis by analyzing the gene expression profile obtained from the Gene Expression Omnibus (GEO) database. The DEGs were examined by gene ontology (GO) functional enrichment analysis and protein-protein interactions (PPI) network. Correlation analysis in R studio software analyzed the association of SPRR and LCE genes. The potential direct protein-protein interactions between SPRR proteins and LCE3D was further verified by co-localization observed in 293T cells and co-immunoprecipitation (CO-IP). The expression levels of SPRR and LCE genes were detected in the IMQ-induced psoriasiform dermatitis mice. Results: The small proline-rich (SPRR) and late cornified envelope (LCE) genes were identified as a module in constructed PPI network. The gene expression profile GSE63684 analysis showed that both SPRR family and LCE family genes were significantly upregulated in imiquimod (IMQ) induced psoriasiform dermatitis mice. Correlation analysis in R studio software recognized the association of SPRR and LCE genes, in which the potential direct protein-protein interactions between SPRR proteins and LCE3D was further verified by co-localization observed in 293T cells and co-immunoprecipitation (CO-IP) results that suggest direct interaction between SPRR2 and LCE3D. Notably, we found that the expression levels of SPRR and LCE genes were significantly increased in the IMQ-induced psoriasiform dermatitis mice while tazarotene cream treatment specifically decreased the mRNA expression of these genes, which indicated that the SPRR and LCEs were regulated simultaneously in psoriasis. Conclusion: Our studies found the interactions of SPRR proteins with LCE proteins, which may provide new insights into the pathogenesis of psoriasis.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 854
Author(s):  
Yishu Wang ◽  
Lingyun Xu ◽  
Dongmei Ai

DNA methylation is an important regulator of gene expression that can influence tumor heterogeneity and shows weak and varying expression levels among different genes. Gastric cancer (GC) is a highly heterogeneous cancer of the digestive system with a high mortality rate worldwide. The heterogeneous subtypes of GC lead to different prognoses. In this study, we explored the relationships between DNA methylation and gene expression levels by introducing a sparse low-rank regression model based on a GC dataset with 375 tumor samples and 32 normal samples from The Cancer Genome Atlas database. Differences in the DNA methylation levels and sites were found to be associated with differences in the expressed genes related to GC development. Overall, 29 methylation-driven genes were found to be related to the GC subtypes, and in the prognostic model, we explored five prognoses related to the methylation sites. Finally, based on a low-rank matrix, seven subgroups were identified with different methylation statuses. These specific classifications based on DNA methylation levels may help to account for heterogeneity and aid in personalized treatments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Song Yang ◽  
Kasey Jividen ◽  
Teddy Kamata ◽  
Natalia Dworak ◽  
Luke Oostdyk ◽  
...  

AbstractAndrogen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Weitong Cui ◽  
Huaru Xue ◽  
Lei Wei ◽  
Jinghua Jin ◽  
Xuewen Tian ◽  
...  

Abstract Background RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. Results Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. Conclusions High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Joon Seon Lee ◽  
Lexuan Gao ◽  
Laura Melissa Guzman ◽  
Loren H. Rieseberg

Approximately 10% of agricultural land is subject to periodic flooding, which reduces the growth, survivorship, and yield of most crops, reinforcing the need to understand and enhance flooding resistance in our crops. Here, we generated RNA-Seq data from leaf and root tissue of domesticated sunflower to explore differences in gene expression and alternative splicing (AS) between a resistant and susceptible cultivar under both flooding and control conditions and at three time points. Using a combination of mixed model and gene co-expression analyses, we were able to separate general responses of sunflower to flooding stress from those that contribute to the greater tolerance of the resistant line. Both cultivars responded to flooding stress by upregulating expression levels of known submergence responsive genes, such as alcohol dehydrogenases, and slowing metabolism-related activities. Differential AS reinforced expression differences, with reduced AS frequencies typically observed for genes with upregulated expression. Significant differences were found between the genotypes, including earlier and stronger upregulation of the alcohol fermentation pathway and a more rapid return to pre-flooding gene expression levels in the resistant genotype. Our results show how changes in the timing of gene expression following both the induction of flooding and release from flooding stress contribute to increased flooding tolerance.


Sign in / Sign up

Export Citation Format

Share Document