scholarly journals Ribosomal stress-surveillance: three pathways is a magic number

2020 ◽  
Vol 48 (19) ◽  
pp. 10648-10661 ◽  
Author(s):  
Anna Constance Vind ◽  
Aitana Victoria Genzor ◽  
Simon Bekker-Jensen

Abstract Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yusuke Kanamaru ◽  
Shiori Sekine ◽  
Hidenori Ichijo ◽  
Kohsuke Takeda

To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5) in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1), facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1) in mammals and stress-responsive mitogen-activated protein (MAP) kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.


2008 ◽  
Vol 21 (6) ◽  
pp. 769-780 ◽  
Author(s):  
Aeid Igbaria ◽  
Sophie Lev ◽  
Mark S. Rose ◽  
Bee Na Lee ◽  
Ruthi Hadar ◽  
...  

Pathogenicity mitogen-activated protein kinases (MAPKs), related to yeast FUS3/KSS1, are essential for virulence in fungi, including Cochliobolus heterostrophus, a necrotrophic pathogen causing Southern corn leaf blight. We compared the phenotypes of mutants in three MAPK genes: HOG1, MPS1, and CHK1. The chk1 and mps1 mutants show autolytic appearance, light pigmentation, and dramatic reduction in virulence and conidiation. Similarity of mps1 and chk1 mutants is reflected by coregulation by these two MAPKs of several genes. Unlike chk1, mps1 mutants are female-fertile and form normal-looking appressoria. HOG1 mediates resistance to hyperosmotic and, to a lesser extent, oxidative stress, and is required for stress upregulation of glycerol-3-phosphate phosphatase, transaldolase, and a monosaccharide transporter. Hog1, but not Mps1 or Chk1, was rapidly phosphorylated in response to increased osmolarity. The hog1 mutants have smaller appressoria and cause decreased disease symptoms on maize leaves. Surprisingly, loss of MPS1 in a wild-type or hog1 background improved resistance to some stresses. All three MAPKs contribute to the regulation of central developmental functions under normal and stress conditions, and full virulence cannot be achieved without appropriate input from all three pathways.


2011 ◽  
Vol 59 (3) ◽  
pp. 285-290
Author(s):  
R. Dóczi

Due to their sessile life style plants have to cope with a variety of unfavourable environmental conditions. Extracellular stimuli are perceived by specific sensors and receptors and are transmitted within the cell by various signal transduction pathways to trigger appropriate responses. The mitogen-activated protein (MAP) kinase cascades are well-conserved signalling pathway modules found in all eukaryotes. Activated MAP kinases phosphorylate an array of substrate proteins. Phosphorylation results in altered substrate activities that mediate a wide range of responses, including changes in gene expression. The genome of the model plant Arabidopsis thaliana contains genes encoding 20 mitogen-activated protein kinases and 10 MAPK kinases. In plants MAP kinases play a central role in environmental stress signalling; however, our knowledge mainly comes from results on three MAP kinases and their immediate upstream activators. Further studies on additional members of the plant MAP kinase repertoire together with the identification of downstream substrates and connections to specific upstream signal receptors are required to elucidate their specific functions within environmental stress signalling networks. Understanding the mechanisms of specificity in signal flow is indispensable for engineering improved crops with modified MAP kinase signalling for agricultural purposes.


2009 ◽  
Vol 5 (4) ◽  
pp. 480-483 ◽  
Author(s):  
Anna L. K. Nilsson ◽  
Maria I. Sandell

The hormone corticosterone (CORT) is an important component of a bird’s response to environmental stress, but it can also have negative effects. Therefore, birds on migration are hypothesized to have repressed stress responses (migration-modulation hypothesis). In contrast to earlier studies on long-distance migrants, we evaluate this hypothesis in a population containing both migratory and resident individuals. We use a population of partially migratory blue tits ( Cyanistes caeruleus ) in southern Sweden as a model species. Migrants had higher CORT levels at the time of capture than residents, indicating migratory preparations, adaptation to stressors, higher allostatic load or possibly low social status. Migrants and residents had the same stress response, thus contradicting the migration-modulation hypothesis. We suggest that migrants travelling short distances are more benefited than harmed by retaining the ability to respond to stress.


Author(s):  
Benjamin P. Johnston ◽  
Craig McCormick

Herpesviruses usurp cellular stress responses to avoid immune detection while simultaneously promoting viral replication and spread. The unfolded protein response (UPR) is an evolutionarily conserved stress response that is activated when the protein load in the ER saturates its chaperone folding capacity causing an accrual of misfolded proteins. Through translational and transcriptional reprogramming, the UPR aims to restore protein homeostasis; however, if this fails the cell undergoes apoptosis. It is commonly thought that many enveloped viruses, including herpesviruses, may activate the UPR due to saturation of the ER with nascent glycoproteins and thus these viruses may have evolved mechanisms to evade the potentially negative effects of UPR signaling. Over the past fifteen years there has been considerable effort to provide evidence that different viruses may reprogram the UPR to promote viral replication. Here we provide an overview of the molecular events of UPR activation, signaling and transcriptional outputs, and highlight key findings that demonstrate that the UPR is an important cellular stress response that herpesviruses have hijacked to facilitate persistent infection.


2003 ◽  
Vol 2 (5) ◽  
pp. 962-970 ◽  
Author(s):  
Todd J. Cohen ◽  
Kun Lee ◽  
Lisa H. Rutkowski ◽  
Randy Strich

ABSTRACT Srb11p-Srb10p is the budding yeast C-type cyclin-cyclin-dependent kinase that is required for the repression of several stress response genes. To relieve this repression, Srb11p is destroyed in cells exposed to stressors, including heat shock and oxidative stress. In the present study, we identified Ask10p (for activator of Skn7) by two-hybrid analysis as an interactor with Srb11p. Coimmunoprecipitation studies confirmed this association, and we found that, similar to Srb11p-Srb10p, Ask10p is a component of the RNA polymerase II holoenzyme. Ask10p is required for Srb11p destruction in response to oxidative stress but not heat shock. Moreover, this destruction is important since the hypersensitivity of an ask10 mutant strain to oxidative stress is rescued by deleting SRB11. We further show that Ask10p is phosphorylated in response to oxidative stress but not heat shock. This modification requires the redundant mitogen-activated protein (MAP) kinase kinase Mkk1/2 but not their normal MAP kinase target Slt2p. Moreover, the other vegetative MAP kinases—Hog1p, Fus3p, or Kss1p—are not required for Ask10p phosphorylation, suggesting the existence of an alternative pathway for transducing the Pkc1p→Bck1→Mkk1/2 oxidative stress signal. In conclusion, Ask10p is a new component of the RNA polymerase II holoenzyme and an important regulator of the oxidative stress response. In addition, these results define a new role for the Pkc1p MAP kinase cascade (except the MAP kinase itself) in transducing the oxidative damage signal directly to the RNA polymerase II holoenzyme, thereby bypassing the stress-activated transcription factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyoung Kim ◽  
Kihyoun Park ◽  
Min Jung Kim ◽  
Hyejin Lim ◽  
Kook Hwan Kim ◽  
...  

AbstractWe have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


2021 ◽  
Vol 9 (6) ◽  
pp. 1116
Author(s):  
Laurens Maertens ◽  
Pauline Cherry ◽  
Françoise Tilquin ◽  
Rob Van Houdt ◽  
Jean-Yves Matroule

Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate responses of two morphotypes of Caulobacter crescentus NA1000 to moderate Cu stress in a complex rich (PYE) medium and a defined poor (M2G) medium. The transcriptome was more responsive in M2G, where we observed an extensive oxidative stress response and reconfiguration of the proteome, as well as the induction of metal resistance clusters. In PYE, little evidence was found for an oxidative stress response, but several transport systems were differentially expressed, and an increased need for histidine was apparent. These results show that the Cu stress response is strongly dependent on the cellular environment. In addition, induction of the extracytoplasmic function sigma factor SigF and its regulon was shared by the Cu stress responses in both media, and its central role was confirmed by the phenotypic screening of a sigF::Tn5 mutant. In both media, stalked cells were more responsive to Cu stress than swarmer cells, and a stronger basal expression of several cell protection systems was noted, indicating that the swarmer cell is inherently more Cu resistant. Our approach also allowed for detecting several new transcription start sites, putatively indicating small regulatory RNAs, and additional levels of Cu-responsive regulation.


Sign in / Sign up

Export Citation Format

Share Document