scholarly journals Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles

2014 ◽  
Vol 42 (15) ◽  
pp. 9996-10004 ◽  
Author(s):  
Emil F. Khisamutdinov ◽  
Hui Li ◽  
Daniel L. Jasinski ◽  
Jiao Chen ◽  
Jian Fu ◽  
...  

Abstract Modulation of immune response is important in cancer immunotherapy, vaccine adjuvant development and inflammatory or immune disease therapy. Here we report the development of new immunomodulators via control of shape transition among RNA triangle, square and pentagon. Changing one RNA strand in polygons automatically induced the stretching of the interior angle from 60° to 90° or 108°, resulting in self-assembly of elegant RNA triangles, squares and pentagons. When immunological adjuvants were incorporated, their immunomodulation effect for cytokine TNF-α and IL-6 induction was greatly enhanced in vitro and in animals up to 100-fold, while RNA polygon controls induced unnoticeable effect. The RNA nanoparticles were delivered to macrophages specifically. The degree of immunostimulation greatly depended on the size, shape and number of the payload per nanoparticles. Stronger immune response was observed when the number of adjuvants per polygon was increased, demonstrating the advantage of shape transition from triangle to pentagon.

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Nihal A. Okan ◽  
Sabina Chalabaev ◽  
Tae-Hyun Kim ◽  
Avner Fink ◽  
Robin A. Ross ◽  
...  

ABSTRACT The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A novel modification enzyme has recently been identified in F. tularensis and Helicobacter pylori. This enzyme, a two-component Kdo (3-deoxy-d-manno-octulosonic acid) hydrolase, catalyzes the removal of a side chain Kdo sugar from LPS precursors. The biological significance of this modification has not yet been studied. To address the role of the two-component Kdo hydrolase KdhAB in F. tularensis pathogenesis, a ΔkdhAB deletion mutant was constructed from the LVS strain. In intranasal infection of mice, the ΔkdhAB mutant strain had a 50% lethal dose (LD50) 2 log10 units higher than that of the parental LVS strain. The levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid were significantly higher (2-fold) in mice infected with the ΔkdhAB mutant than in mice infected with LVS. In vitro stimulation of bone marrow-derived macrophages with the ΔkdhAB mutant induced higher levels of TNF-α and IL-1β in a TLR2-dependent manner. In addition, TLR2−/− mice were more susceptible than wild-type mice to ΔkdhAB bacterial infection. Finally, immunization of mice with ΔkdhAB bacteria elicited a high level of protection against the highly virulent F. tularensis subsp. tularensis strain Schu S4. These findings suggest an important role for the Francisella Kdo hydrolase system in virulence and offer a novel mutant as a candidate vaccine. IMPORTANCE The first line of defense against a bacterial pathogen is innate immunity, which slows the progress of infection and allows time for adaptive immunity to develop. Some bacterial pathogens, such as Francisella tularensis, suppress the early innate immune response, killing the host before adaptive immunity can mature. To avoid an innate immune response, F. tularensis enzymatically modifies its lipopolysaccharide (LPS). A novel LPS modification—Kdo (3-deoxy-d-manno-octulosonic acid) saccharide removal—has recently been reported in F. tularensis. We found that the ∆kdhAB mutant was significantly attenuated in mice. Additionally, the mutant strain induced an early innate immune response in mice both in vitro and in vivo. Immunization of mice with this mutant provided protection against the highly virulent F. tularensis strain Schu S4. Thus, our study has identified a novel LPS modification important for microbial virulence. A mutant lacking this modification may be used as a live attenuated vaccine against tularemia.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Rodrigo Andrade Schuch ◽  
Thaís Larré Oliveira ◽  
Thaís Farias Collares ◽  
Leonardo Garcia Monte ◽  
Guilherme Roig Inda ◽  
...  

The successful production of new, safe, and effective vaccines that generate immunological memory is directly related to adjuvant feature, which is responsible for increasing and/or modulating the immune response. Several compounds display adjuvant activity, including carbohydrates. These compounds play important roles in the immune response, as well as having biocompatible properties in vaccine formulations. One such carbohydrate is xanthan gum, a polysaccharide that is produced by the plant-pathogenic bacterium Xanthomonas spp., which has adjuvant attributes. This study evaluated the immune response induced by xanthan gum associated with ovalbumin in BALB/c mice, which were subcutaneously immunized, in terms of antibody production (IgG1, IgG2a, IgG2b, and IgG3), and assessed the levels of IFN-γ in the splenocyte culture using indirect ELISA. Furthermore, we investigated in vitro cytotoxicity of xanthan in the embryo fibroblasts cell line of the NIH/3T3 mouse by MTT assay and propidium iodide uptake assay. The mice immunized with ovalbumin plus xanthan gum exhibited higher antibody IgG1 responses than control groups. Furthermore, the xanthan polysaccharide was capable of increasing the immunogenicity of antigens by producing IFN-γ and did not exhibit cytotoxicity effects in NIH/3T3 mouse fibroblast cells, considered a promising candidate for vaccine adjuvant.


2003 ◽  
Vol 371 (1) ◽  
pp. 205-210 ◽  
Author(s):  
Masashi YAJIMA ◽  
Masatoshi TAKADA ◽  
Nahoko TAKAHASHI ◽  
Haruhisa KIKUCHI ◽  
Shunji NATORI ◽  
...  

Innate immunity is the first line of defence against infectious micro-organisms, and the basic mechanisms of pathogen recognition and response activation are evolutionarily conserved. In mammals, the innate immune response in combination with antigen-specific recognition is required for the activation of adaptive immunity. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Here, for the purpose of pharmaceutical screening, we established an in vitro culture based on the innate immune response of Drosophila. The in vitro system is capable of measuring lipopolysaccharide (LPS)-dependent activation of the immune deficiency (imd) pathway, which is similar to the tumour necrosis factor signalling pathway in mammals. Screening revealed that well-known inhibitors of phospholipase A2 (PLA2), dexamethasone (Dex) and p-bromophenacyl bromide (BPB) inhibit LPS-dependent activation of the imd pathway. The inhibitory effects of Dex and BPB were suppressed by the addition of an excess of three (arachidonic acid, eicosapentaenoic acid and γ-linolenic acid) of the fatty acids so far tested. Arachidonic acid, however, did not activate the imd pathway when used as the sole agonist. These findings indicate that PLA2 participates in LPS-dependent activation of the imd pathway via the generation of arachidonic acid and other mediators, but requires additional signalling from LPS stimulation. Moreover, PLA2 was activated in response to bacterial infection in Sarcophaga. These results suggest a functional link between the PLA2-generated fatty acid cascade and the LPS-stimulated imd pathway in insect immunity.


2010 ◽  
Vol 78 (11) ◽  
pp. 4734-4743 ◽  
Author(s):  
Simone Guglielmetti ◽  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ivan Zanoni ◽  
...  

ABSTRACT The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4322-4322 ◽  
Author(s):  
Diane Carter ◽  
Alicia Tyrell ◽  
Simon Bubnic ◽  
Michelle Marcelino ◽  
Keren Kedzierski ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are rare progenitor cells present in adult bone marrow that have the capacity to differentiate into a variety of tissue types, including bone, cartilage and fat. The biological activities of MSCs suggest a number of potential clinical applications, where each particular application is related to a specific MSC activity mediated by a different mechanism. Osiris Therapeutics has developed a technology for isolation and expansion of hMSCs from adult bone marrow for clinical use. Data from pre-clinical and clinical studies suggest that the ability of MSCs to migrate to inflammatory sites, modulate immune response, down-regulate inflammation, and accelerate tissue repair in the local environment may have therapeutic effects. Therefore in developing therapeutic applications, the MSCs should be verified to display one or more of above-mentioned functions, calling for the need to develop predictive functional assays. Modulation of the immune response is an apparent in vivo therapeutic property of the MSC necessary for successful Graft versus Host Disease (GVHD) treatment. Based on previous knowledge regarding mechanisms underlying MSC-mediated immunosuppressive effects, several markers for developing an MSC potency assay have been proposed. In the present study a relationship between selected markers and hMSC-mediated immunosuppression was investigated in vitro. Results show that co-culture of hMSCs with anti-CD3/CD28-activated peripheral blood mononuclear cells (hPBMCs) caused inhibition of lymphocyte proliferation. The hMSC effect on lymphocyte proliferation is dose-dependent, causing > 50% inhibition at approximately 1:10–1:25 MSC: T-lymphocyte ratio. Supernatants of parallel co-cultures taken on days 1, 3, and 5 were analyzed for prostaglandin 2 (PGE2), tumor necrosis factor-α (TNF-α), and tryptophan. The results showed increased levels of PGE2, decreased levels of TNF-α and increased depletion of tryptophan related to indoleamine 2,3-dioxygenase (IDO) enzyme activity, associated with increasing number of MSCs in each well. The quantity of PGE2 on day 1 and the level of tryptophan on day 5 in the MSC-PBMC co-culture supernatants correlated to the level of inhibition of proliferation, with the PGE2 range from approximately 11,000 to 22,000 pg/mL and 50% tryptophan depletion resulting in a 50% inhibition of the lymphocyte proliferation point. Further studies demonstrated that the addition of TNF-α to MSCs induced PGE2 secretion at a level which was similar to that detected in the co-culture studies of MSCs-PBMC. Thus, a strong correlation between inducible PGE2 secretion/IDO enzyme activity and the inhibition of lymphocyte proliferation by hMSCs in vitro indicates key molecules responsible for hMSC functional activity related to the immunological responses involved with diseases such as GVHD, solid organ transplantation and autoimmune diseases.


2016 ◽  
Vol 19 (3) ◽  
pp. 485-494 ◽  
Author(s):  
R. Lin ◽  
Q. Wang ◽  
B. Qi ◽  
Y. Huang ◽  
G. Yang

Abstract Neuromedin S (NMS), a 36-amino acid neuropeptide, has been found to be involved in the regulation of the endocrine activity. It has been also detected in immune tissues in mammals, what suggests that NMS may play an important role in the regulation of immune response. The aim of this study was to demonstrate the presence of NMS receptor 1 (NMU1R) and effect of NMS in pig splenic lymphocytes (SPLs) and pulmonary alveolar macrophages (PAMs). The presence of NMU1R in pig SPLs and PAMs was respectively confirmed by reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunocytochemical methods. Furthermore, SPL proliferation was analyzed using the 3-(4,5)-dimethyl-thiahiazo-(-2-yl)-3,5-di-phenytetrazoliumromide (MTT) method. Additionally, the secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in PAMs was all measured by enzyme-linked immunosorbent assay (ELISA) kits. In the present study, the results of RT-PCR and western blot analysis revealed that NMU1R mRNA and protein were both expressed in pig SPLs and PAMs, and the immunocytochemical investigations further revealed that the positive signal of NMU1R immunoreactivity was observed in plasma membranes of both SPLs and PAMs. In the in vitro study, we found that at concentrations of 0.001-1000 nM NMS alone or combined with lipopolysaccharide or phytohemagglutinin significantly increased SPL proliferation. Application of ELISA method showed that NMS could induce the secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs. These results suggest that NMS can act as a potently positive pro-inflammatory factor and immunomodulatory agent that affects the immune response of immune cells by combining with its receptor NMU1R.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Piotr Bąska ◽  
Anna Zawistowska-Deniziak ◽  
Anna Zdziarska ◽  
Katarzyna Wasyl ◽  
Marcin Wiśniewski ◽  
...  

AbstractFasciola hepatica is a liver fluke that infects 2.4 million of people and causes great economical loss in animal production. To date a 100% effective vaccine has not been developed and the disease is controlled by drug therapy. Great efforts are put into development of effective vaccine against parasite what is difficult since Fasciola spp. (like other helmints) during evolutionary process has developed sophisticated and efficient methods to evade immune response. During preliminary experiments it is convenient to use cell lines which are relatively cheap and allow for reproducible comparison of results between laboratories. We stimulated BOMA (bovine monocyte/macrophage cell line) and BOMAC (bovine macrophage cell line) with native or recombinant antigens of Fasciola hepatica and assessed IFN-γ, IL-4 and TNF-α level upon stimulation. We observed diminished secretion of proinflammatory TNF-α in LPS activated BOMA cells stimulated with Excretory/Secretory products of adult fluke (Fh-ES). We also observed greater changes in gene expression in LPS activated BOMA cells than in non activated BOMA cells upon stimulation using Fh-ES. The results show possibility of using cell lines for in vitro research of bovine immune response against liver fluke, although this model still requires validation and further characterization.


2000 ◽  
Vol 68 (7) ◽  
pp. 4264-4273 ◽  
Author(s):  
Laurent Kremer ◽  
Jérôme Estaquier ◽  
Isabelle Wolowczuk ◽  
Franck Biet ◽  
Jean-Claude Ameisen ◽  
...  

ABSTRACT It has previously been reported that inhibition of delayed-type hypersensitivity-mediating functions of T cells during mycobacterial infection in mice is haplotype dependent. In the present study, we show that Mycobacterium bovis BCG infection induced, in susceptible C57BL/6 and BALB/c mice but not in resistant C3H/HeJ and DBA/2 mice, an important splenomegaly. An in vitro defect in T-cell proliferation in response to T-cell receptor (TCR) stimulation with mitogens or anti-CD3 antibodies was associated with enhanced levels of CD4+ and CD8+ T-cell apoptosis in susceptible but not in resistant mice 2 weeks after infection. Further investigations of C57BL/6 and C3H/HeJ mice revealed that in vivo splenomegaly was associated with destruction of the lymphoid tissue architecture, liver cellular infiltrates, and increased numbers of apoptotic cells in both spleen and liver tissue sections. Infection of C57BL/6 mice but not of C3H/HeJ mice induced massive production of tumor necrosis factor alpha (TNF-α) in serum, as well as an increase in Fas and Fas ligand (FasL) expression in T cells. In vitro addition of neutralizing anti-TNF-α antibodies led to a significant reduction in CD3-induced T-cell apoptosis of both CD4+ and CD8+ T cells of C57BL/6 mice, while the blockade of Fas-FasL interactions reduced apoptosis only in CD4+ but not in CD8+ T cells. Together, these results suggest that TNF-α and Fas-FasL interactions play a role in the activation-induced cell death (AICD) process associated with a defect in T-cell proliferation of the susceptible C57BL/6 mice. T-cell death by apoptosis may represent one of the important components of the ineffective immune response against mycobacterium-induced immunopathology in susceptible hosts.


2006 ◽  
Vol 60 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Donatella F Angelone ◽  
Michael R Wessels ◽  
Melissa Coughlin ◽  
Eugenie E Suter ◽  
Piero Valentini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document