scholarly journals COVD-02. ADAPTING RNA-NANOPARTICLE VACCINES FROM GLIOBLASTOMA TO SARS-COV-2

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii21-ii21
Author(s):  
Hector Mendez-Gomez ◽  
Paul Castillo ◽  
Noah Jones ◽  
Sadeem Qdaisat ◽  
Frances Weidert ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) can be an effective teacher in the war on COVID-19, as an operative vaccine for either must elicit near-immediate protective responses that overcomes disease heterogeneity and immune suppression. Current prophylactic strategies against COVID-19 utilize mRNA vaccines targeting small fragments of the SARS-CoV-2 genome, but these may not induce robust T cell responses or elicit immunity quickly enough. OBJECTIVE We sought to adapt an FDA-IND approved mRNA vaccine in GBM against COVID-19 for: 1) activation of near immediate immune responses, 2) targeting of full-length SARS-CoV-2 structural proteins, and 3) induction of bidirectional (B and T cell) adaptive immunity. METHODS We utilized a novel engineering design that layers mRNA into a lipid-nanoparticle (NP) shell (much like an onion); this allows greater packaging of mRNA per particle to quickly boost innate/adaptive immune responses against full-length glioblastoma antigens or SARS-CoV-2 structural proteins. RESULTS In small and large animal models, RNA-NPs safely mimic viremia activating the quiescent immune system in only a few hours for induction of protective immunity against its mRNA payload. RNA-NPs activate dendritic cells (DCs), upregulate critical innate gene signatures, and induce antigen-specific cellular and humoral immunity. We found that mice receiving SARS-CoV-2 spike RNA-NPs had more effector T cells after vaccination with significant memory recall expansion after in vitro re-stimulation with overlapping SARS-CoV-2 spike peptide mix. We also found increased release of MIP-1-alpha (i.e. CCL3) previously shown by our group (Mitchell et al. Nature 2015) to be responsible for Th1 mediated memory recall to infectious vaccine antigens in GBM patients. CONCLUSION SARS-CoV-2 RNA-NPs elicit memory recall response after vaccination. We have obtained FDA-IND approval (BB-19304, Sayour) in GBM with SARS-CoV-2 specific amendment (BB-20871) underway to support first-in-human trials of RNA-NPs targeting both GBM and COVID-19.

2008 ◽  
Vol 2 (2) ◽  
Author(s):  
W. T. Chen ◽  
C. Zhang

Hepatities C Virus (HCV) is a significant health problem worldwide due to the lack of effective vaccines. HCV plasmid DNA (pDNA) vaccine represents a promising means to induce a Th1-biased cell-mediated response which tends to be associated with HCV clearance. However, the immune responses induced by naked pDNA vaccine in large animals as well as in humans are usually too weak to show sufficient protection against new infections. Therefore, it is interesting to look for new ways to deliver HCV pDNA vaccine. In this research, carbon nanotube (CNT) is used as a carrier to deliver the pDNA vaccine of HCV to induce high immune responses, because CNT has some excellent properties such as high strength and good biocompatibility. One of the key approaches to make this idea work is to treat CNT so that it can bind with HCV pDNA with good stability. An approach called 1, 3-dipolar cycloaddition of azomethine ylides was modified. We analyzed the complex of f-CNTs combined with pDNA vaccines expressing HCV E2 protein by using Enzyme-linked immunospot (ELISPOT) or Enzyme-linked immunosorbent assay (ELISA) assay in vitro. The result showed that the CNT approach can induce stronger protective immune responses than the needle delivery of naked pDNA vaccine. We have also found an optimal way to treat CNT in light of the highest immune response in the same testing environment. The success of this research will warrant testing HCV vaccine in large animal models and human clinical trials.


1997 ◽  
Vol 186 (4) ◽  
pp. 497-506 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Pierre R. Gianello ◽  
Francesco L. Ierino ◽  
Thomas Lorf ◽  
Akira Shimizu ◽  
...  

The almost uniform failure in transplant patients of tolerance-inducing regimens that have been found to be effective in rodents, has made it necessary to examine large animal models before testing of new approaches clinically. Miniature swine have been shown to share many relevant immunologic parameters with humans, and because of their reproducible genetics, have proved extremely useful in providing such a large animal model. We have previously shown that indefinite systemic tolerance to renal allografts in miniature swine is induced in 100% of cases across a two-haplotype class I plus minor histocompatibility antigen disparity by a 12-d course of Cyclosporine A (CyA), in contrast to irreversible rejection observed uniformly without CyA treatment. In the present study, we have examined the role of the thymus during the induction of tolerance by performing a complete thymectomy 21 d before renal transplantation. This analysis demonstrated a striking difference between thymectomized and nonthymectomized animals. Thymectomized swine developed acute cellular rejection characterized by a T cell (CD25+) infiltrate, tubulitis, endothelialitis and glomerulitis, and anti–donor CTL reactivity in vitro. Nonthymectomized and sham thymectomized animals had a mild T cell infiltrate with few CD25+ cells and no anti–donor CTL response in vitro. These results indicate that the thymus is required for rapid and stable induction of tolerance.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Laia Bosch-Camós ◽  
Elisabet López ◽  
María Jesús Navas ◽  
Sonia Pina-Pedrero ◽  
Francesc Accensi ◽  
...  

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2019 ◽  
Vol 20 (18) ◽  
pp. 4323 ◽  
Author(s):  
Salvo Danilo Lombardo ◽  
Emanuela Mazzon ◽  
Maria Sofia Basile ◽  
Giorgia Campo ◽  
Federica Corsico ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses, but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28 is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3 is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent minor changes upon activation. The in vitro data were finally translated into the context of multiple sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T helper immune response and may represent a target of future immunoregulatory therapies for T cell-mediated autoimmune diseases.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A13.1-A13
Author(s):  
LK Klauer ◽  
O Schutti ◽  
S Ugur ◽  
F Doraneh-Gard ◽  
N Rogers ◽  
...  

BackgroundMyeloid leukaemic blasts can be converted into leukaemia derived dendritic cells (DCleu) with blastmodulatory Kit-I and Kit-M, which have the competence to regularly activate T and immunoreactive cells to gain anti-leukaemic activity or rather cytotoxicity. As innate and adaptive immune responses are notably promoted by the cytokine interferon gamma (IFNy), we hypothesised that the IFNy secretion could be a suitable parameter to display DC/DCleu mediated immunologic activity and even anti-leukaemic cytotoxicity.Materials and MethodsDC/DCleu were generated from leukaemic WB with Kit-I (GM-CSF + OK-432) and Kit-M (GM-CSF + PGE1) and used to stimulate T cell enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay (CTX). Initiated IFNy secretion of innate and adaptive immune cells (T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells, NKCD161+ cells, CIKCD56+ cells, CIKCD161+ cells and iNKT) was investigated with a cytokine secretion assay (CSA). In some cases IFNy production was additionally evaluated with an intracellular cytokine assay (ICA). Conclusively, the IFNy secretion of immunoreactive cells was correlated with the anti-leukaemic cytotoxicity.ResultsSignificant amounts of DC and DCleu as well as migratory DC and DCleu could be generated with Kit-I and Kit-M without induction of blast proliferation. T cell enriched immunoreactive cells stimulated with DC/DCleu showed an increased anti-leukaemic cytotoxicity and an increased IFNy secretion of T, NK and CIK cells compared to control. Both the CSA and ICA yielded comparable amounts of IFNy positive innate and adaptive immune cells. The correlation between the IFNy secretion of immunoreactive cells and the anti-leukaemic cytotoxicity showed a positive relationship in T cells, TCD4+ cells, TCD8+ cells and NKCD56+ cells.ConclusionsWe found blastmodulatory Kit-I and Kit-M competent to generate DC/DCleu from leukaemic WB. Stimulation of T cell enriched immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and an increased IFNy dependent immunological activity of T, NK and CIK cells compared to control. Moreover the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells. We therefore consider the IFNy secretion of innate and adaptive immune cells to be a suitable parameter to assess the efficacy of in vitro and potentially in vivo AML immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy secreting cells of the innate and adaptive immune system.Disclosure InformationL.K. Klauer: None. O. Schutti: None. S. Ugur: None. F. Doraneh-Gard: None. N. Rogers: None. M. Weinmann: None. D. Krämer: None. A. Rank: None. C. Schmid: None. B. Eiz-Vesper: None. H.M. Schmetzer: None.


Sign in / Sign up

Export Citation Format

Share Document