scholarly journals IMMU-55. GD2 IS A MACROPHAGE CHECKPOINT MOLECULE AND COMBINED GD2/CD47 BLOCKADE RESULTS IN SYNERGISTIC EFFECTS AGAINST GD2 POSITIVE MALIGNANCIES

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii116-ii116
Author(s):  
Johanna Theruvath ◽  
Christopher Mount ◽  
Michelle Monje ◽  
Crystal Mackall ◽  
Robbie Majzner

Abstract GD2 is a disialoganglioside expressed on a variety of tumors including DIPG, neuroblastoma and osteosarcoma. Anti-GD2 antibodies have demonstrated some success in neuroblastoma and they have either not proven to be effective or have not been evaluated in other GD2 positive malignancies. CD47 is the dominant “Don’t Eat Me” signal expressed by cancer cells to inhibit macrophages and blocking CD47 leads to phagocytosis of tumor cells. We hypothesized that CD47 blockade synergizes with anti-GD2. We measured in vitro phagocytosis of DIPG and NBL cells and observed a synergy of anti-GD2/CD47 compared to the single agents. In vivo, this combination led to the complete clearance of both orthotopic and metastatic models of NBL. Additionally, the combination significantly enhanced survival of OS xenografts. Finally, in a murine model of metastatic pulmonary OS, the combination led to a near elimination of all metastatic burden. To understand the underlying biologic basis, we studied the effects of GD2 crosslinking on tumor cells and the effects of GD2 blockade on macrophages. A portion of DIPG or NBL cells die when treated with dinutuximab, and those that survive upregulate surface calreticulin, an important pro-phagocytic (“Eat Me”) signal. Additionally, we have identified the ligand for GD2, a molecule expressed on macrophages known to inhibit phagocytosis. In summary, we have identified a novel combination of anti-GD2 and anti-CD47 antibodies that is highly effective in preclinical models and will soon be tested in children. Furthermore, we have shown that GD2 itself is a macrophage checkpoint or “Don’t Eat Me” signal.

2021 ◽  
Author(s):  
Huazhen Xu ◽  
Tongfei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background: Tumor-associated macrophages (TAM) are the most abundant stromal cells in the tumor microenvironment. Turning the TAM against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAM into the anti-tumor M1 phenotype. Results: Nano-DOX were first shown to stimulate the tumor cells and the TAM to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAM. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAM both by blocking Nano-DOX-induced PD-L1 in the TAM and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAM with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAM to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAM, achieves enhanced activation of TAM-mediated anti-tumor response.


2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.


Author(s):  
Said Izreig ◽  
Alexandra Gariepy ◽  
Ariel O. Donayo ◽  
Gaëlle Bridon ◽  
Daina Avizonis ◽  
...  

AbstractCancer cells display metabolic plasticity to survive metabolic and energetic stresses in the tumor microenvironment, prompting the need for tools to target tumor metabolism. Cellular adaptation to energetic stress is coordinated in part by signaling through the Liver Kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Reducing LKB1-AMPK signaling exposes metabolic vulnerabilities in tumor cells with potential for therapeutic targeting. Here we describe that miRNA-mediated silencing of LKB1 (mediated by the oncogenic miRNA cluster miR-17∼92) confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and novel (IM156) biguanides, we demonstrate that Myc+ lymphoma cells with elevated miR-17∼92 expression display increased sensitivity to biguanide treatment both in cell viability assays in vitro and tumor growth assays in vivo. This increased biguanide sensitivity is driven by miR-17-dependent silencing of LKB1, which results in reduced AMPK activation in response to bioenergetic stress. Mechanistically, biguanide treatment inhibits TCA cycle metabolism and mitochondrial respiration in miR-17∼92-expressing tumor cells, targeting their metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in hematological malignancies and solid tumors.One Sentence SummarymiR-17∼92 expression in Myc+ tumors sensitizes cancer cells to biguanide treatment by disrupting bioenergetic stability in lymphoma cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 991-991
Author(s):  
Pamela T. Manning ◽  
Benjamin J. Capoccia ◽  
Michael P. Rettig ◽  
Ronald R. Hiebsch ◽  
Robert W. Karr ◽  
...  

Abstract Recent success in immunomodulation of cancer has targeted immune checkpoints such as CTLA-4, PD-1 and PDL-1 to enhance adaptive immunity by stimulating production of tumor-selective, cytotoxic T cells. Anti-CD47mAbs enhance innate immunity by increasing the phagocytosis of tumor cells by macrophages leading to processing and presentation of tumor antigens to prime the adaptive T cell response. Many cancers, including hematologic cancers, up-regulate the expression of CD47 presumably to avoid immune destruction. Increased CD47 expression protects cancer cells from phagocytosis by sending a “don't eat me” signal to macrophages via SIRPalpha, an inhibitory receptor that prevents phagocytosis of CD47-bearing cells. CD47mAbs that block the CD47/SIRPalpha interaction (“blocking-only” mAbs) enhance phagocytosis of cancer cells in vitro. We have identified two CD47mAbs, Vx-1000 and Vx-1004, both of which block the CD47/SIRPalpha interaction and promote phagocytosis of tumor cells by macrophages equally well. However, Vx-1004 also has the unique property of killing cancer cells, but not normal blood cells, via a direct, cell-autonomous, cytotoxic mechanism. Therefore, Vx-1004 is a dual-function antibody. Vx-1004 selectively kills a variety of hematologic cancer cells in vitro, while Vx-1000, the blocking-only mAb, does not as assessed by annexin V staining and flow cytometry (Figure 1). In dose-response studies, cell death in leukemia cells was induced in 2 hrs by <1 ug="" vx-1004="" whereas="" normal="" peripheral="" blood="" mononuclear="" cells="" are="" resistant="" to="" the="" induction="" of="" cell="" death="" by="" following="" incubation="" with="" 10="" for="" 24="" hrs="" both="" these="" cd47mabs="" bind="" many="" species="" cd47="" including="" mouse="" and="" human="" p=""> To determine if the tumor-toxic activity of Vx-1004 confers enhanced efficacy in vivo compared to Vx-1000, we compared them in two mouse hematologic cancer models: murine acute promyelocytic leukemia (APL) and B cell lymphoma (BCL). Briefly, 1x106 GFP-labeled C57BL/6 APL cells were injected IV into wild-type C57BL/6 mice that were then treated IP with 0.4 mg/kg of either Vx-1000 or Vx-1004 on the day of tumor injection and on days 3 and 6 following tumor injection, a very low dose and limited dosing regimen. On day 25, the blood of these mice was analyzed for the number of circulating APL cells. As shown in Figure 2, Vx-1000 did not significantly reduce tumor burden compared to the control group. In contrast, Vx-1004 significantly reduced tumor burden compared to controls, demonstrating greater efficacy of the dual-function CD47mAb. In addition, enhanced efficacy of Vx-1004 compared to Vx-1000 was demonstrated in BCL (Figure 3). In this model, NSG mice were injected with 1x106 murine A20 lymphoma cells subcutaneously and then treated with 0.4mg/kg/day of the CD47mAbs IP for the first five days following tumor injection. In this model, Vx-1000 also failed to inhibit tumor growth compared to controls while Vx-1004 significantly reduced tumor burden at 35 days compared to both the control and Vx-1000 groups, nearly four weeks after treatment was stopped. These data demonstrate increased anti-cancer efficacy with a dual-function CD47mAb that not only blocks the CD47/SIRPalpha interaction to increase phagocytosis of cancer cells, but also selectively kills cancer cells. These studies indicate that dual-function CD47mAbs may have better anti-tumor activity in vivo and support their use in human clinical trials. Figure 1 Figure 1. Disclosures Manning: Corvus Pharmaceutical: Employment, Equity Ownership. Capoccia:Corvus Pharmaceutical: Employment, Equity Ownership. Hiebsch:Corvus Pharmaceutical: Employment, Equity Ownership. Karr:Corvus Pharmaceutical: Employment, Equity Ownership. Frazier:Corvus Pharmaceutical: Consultancy, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4405-4405
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract To harness the potent tumor-killing capacity of T cells for the treatment of CD19+ malignancies, we developed a humanized bispecific tetravalent antibody, with two binding sites for CD3 and CD19, the CD19/CD3 RECRUIT-TandAb AFM11. CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies such as Non Hodgkin Lymphoma. Since native antibodies cannot recruit T cells, we engineered a bispecific anti-CD19/anti-CD3 TandAb. The tumor-specific CD19 antigen module targets the TandAb to cancer cells, while simultaneously, the CD3 effector module recruits and activates T cells, leading to cancer cell lysis. The advantages of the TandAb technology, relative to other bi-functional fragment antibody scaffolds, include: improved pharmacokinetics (PK) enabling intravenous dosing, more drug-like properties, and avidity-enhanced efficacy for the targeting and killing of tumor cells. We evaluated in vitro efficacy and safety using CD19+ cell lines, and in vivo efficacy in a murine NOD/scid xenograft model reconstituted with human PBMC. Further, we used standard preclinical IND enabling assays to evaluate tissue cross reactivity, PK, and toxicological profile (local tolerance, hematocompatibility, effects on hematopoesis, etc). In vitro assays demonstrated the higher potency and efficacy of target cell lysis by AFM11 relative to a bispecific tandem scFv (that is currently in clinical evaluation). CD8+ T cells dominate early AFM11-mediated cytotoxicity (4 hrs) while after 24 hrs both CD4+ and CD8+ T cells equally contribute to tumor lysis with EC50 between 0.5 – 5 pM; cytotoxicity was independent of CD19 cell-surface density. AFM11 exhibited similar cytotoxicity over effector:target ratios ranging from 5:1 to 1:5, and facilitated serial T cell-killing of its targets. The advantage of AFM11 over the bispecific tandem scFv was most pronounced at lower effector:target ratios. AFM11 activated T cells only in the presence of CD19+ cells. In PBMC cultures, AFM11 induced CD69 and CD25 expression, T cell proliferation, and production of IFN-γ, TNF-α, IL-2, IL-6, and IL-10. Depletion of CD19+ cells from PBMC abrogated these effects, demonstrating that the T cell activation is strictly CD19+ target-dependent. Thus, AFM11 should not elicit the devastating cytokine release observed when full-length antibodies bind CD3. Up to one week co-incubation with AFM11 did not inhibit T cell cytotoxicity, suggesting that the TandAb does not induce anergy. In vivo, AFM11 induced dose-dependent growth inhibition of Raji tumors; a single 0.5 mg/kg dose exhibited efficacy similar to 5 daily injections. In the tissue cross reactivity study, only tissues containing CD19+ and CD3+ cells were stained by AFM11; all other tissues, including vital organs, displayed no cross reactivity. Similarly, no local intolerance was observed in rabbits, and no effect on myeloid and erythroid progenitors was observed in a colony-forming assay. Strong accumulation of 125I-labeled AFM11 was observed in the tumors of mice engrafted with CD19+ cancer cells, and no unspecific organ accumulation was observed. Finally, evaluated on the basis of Cmax and the area under the curve (AUC), AFM11 exhibited dose linearity (20 – 500 mg AFM11 dose range) upon single i.v. bolus administration in mice; half-life (T1/2) ranged from 18.4 to 22.9 hr. In summary, AFM11 is a highly efficacious novel drug candidate for the treatment of CD19+ malignancies with an advantageous safety profile and anticipated dosing regimen. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment. Little:Affimed Therapeutics AG: Consultancy, Equity Ownership.


2020 ◽  
Vol 21 (2) ◽  
pp. 653 ◽  
Author(s):  
Luan Wen ◽  
Changzhi Zhao ◽  
Jun Song ◽  
Linyuan Ma ◽  
Jinxue Ruan ◽  
...  

Mammalian telomere lengths are primarily regulated by telomerase, a ribonucleoprotein consisting of a reverse transcriptase (TERT) and an RNA subunit (TERC). TERC is constitutively expressed in all cells, whereas TERT expression is temporally and spatially regulated, such that in most adult somatic cells, TERT is inactivated and telomerase activity is undetectable. Most tumor cells activate TERT as a mechanism for preventing progressive telomere attrition to achieve proliferative immortality. Therefore, inactivating TERT has been considered to be a promising means of cancer therapy. Here we applied the CRISPR/Cas9 gene editing system to target the TERT gene in cancer cells. We report that disruption of TERT severely compromises cancer cell survival in vitro and in vivo. Haploinsufficiency of TERT in tumor cells is sufficient to result in telomere attrition and growth retardation in vitro. In vivo, TERT haploinsufficient tumor cells failed to form xenograft after transplantation to nude mice. Our work demonstrates that gene editing-mediated TERT knockout is a potential therapeutic option for treating cancer.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5908
Author(s):  
Adam Neal ◽  
Tiffany Lai ◽  
Tanya Singh ◽  
Neela Rahseparian ◽  
Tristan Grogan ◽  
...  

Ovarian malignancies are a leading cause of cancer-related death for US women. High-grade serous ovarian carcinomas (HGSOCs), the most common ovarian cancer subtype, are aggressive tumors with poor outcomes. Mutations in TP53 are common in HGSOCs, with a subset resulting in p53 aggregation and misregulation. ReACp53 is a peptide designed to inhibit mutant p53 aggregation and has been shown efficacious in targeting cancer cells in vitro and in vivo. As p53 regulates apoptosis, combining ReACp53 with carboplatin represents a logical therapeutic strategy. The efficacy of this combinatorial approach was tested in eight ovarian cancer cell lines and 10 patient HGSOC samples using an in vitro organoid drug assay, with the SynergyFinder tool utilized for calculating drug interactions. Results demonstrate that the addition of ReACp53 to carboplatin enhanced tumor cell targeting in the majority of samples tested, with synergistic effects measured in 2 samples, additivity measured in 14 samples, and antagonism measured in 1 sample. This combination was found to be synergistic in OVCAR3 ovarian cancer cells in vitro through enhanced apoptosis, and survival of mice bearing OVCAR3 intraperitoneal xenografts was extended when treated with the addition of ReACp53 to carboplatin versus carboplatin alone. Results suggest that carboplatin and ReACp53 may be a potential strategy in targeting a subset of HGSOCs.


Author(s):  
Sheng Li ◽  
Lina Wu ◽  
Hong Zhang ◽  
Xijuan Liu ◽  
Zilei Wang ◽  
...  

Hepatocellular carcinoma (HCC) is characterized by a high rate of incidence and recurrence, and resistance to chemotherapy may aggravate the poor prognosis of HCC patients. Sorafenib resistance is a conundrum to the treatment of advanced/recurrent HCC. Therefore, studies on the molecular pathogenesis of HCC and the resistance to sorafenib are of great interest. Here, we report that GINS1 was highly expressed in HCC tumors, associated with tumor grades, and predicted poor patient survival using Gene Expression Omnibus (GEO) databases exploration. Cell cycle, cell proliferation assay and in vivo xenograft mouse model indicated that knocking down GINS1 induced in G1/S phase cell cycle arrest and decreased tumor cells proliferation in vitro and in vivo. Spheroid formation assay results showed that GINS1 promoted the stem cell activity of HCC tumor cells. Furthermore, GEO database (GSE17112) analysis showed that HRAS oncogenic gene set was enriched in GINS1 high-expressed cancer cells, and quantitative real-time PCR, and Western blot results proved that GINS1 enhanced HCC progression through regulating HRAS signaling pathway. Moreover, knocking down endogenous GINS1 with shGINS1 increased the sensitivity of HCC cells to sorafenib, and restoring HRAS or stem associated pathway partly recovered the sorafenib resistance. Overall, the collective findings highlight GINS1 functions in hepatocarcinogenesis and sorafenib resistance, and indicate its potential use of GINS1 in drug-resistant HCC.


Author(s):  
Defeng Jiao ◽  
Xiaohu Zheng ◽  
Xianghui Du ◽  
Dong Wang ◽  
Ziming Hu ◽  
...  

AbstractThe higher immunogenicity of tumors usually predicts favorable therapeutic responses. Tumor antigens dominate the immunogenic character within tumors. We investigated if there was a targetable tumor antigen during immunogenic chemotherapy within lung cancer. Chemotherapy-induced immunogenic senescence was demonstrated using a multi-marker, three-step workflow, and RNA-sequencing data. The ability of anti-lung-specific X protein (LUNX) antibody to suppress the survival of senescent lung cancer cells was evaluated in vitro and in vivo using real-time cytotoxicity analysis and xenograft mouse models, respectively. The induction of cellular senescence by immunogenic chemotherapy boosted cell-surface shuttling of LUNX and enhanced the immunogenic features of senescent tumor cells, which sensitized lung cancer cells to anti-LUNX antibody-mediated therapy and contributed to tumor suppression. The immunogenic senescence-mediated anti-tumor response was triggered by the direct action of antibody on tumor cells, strengthened by natural-killer cells through an antibody-dependent cell-mediated cytotoxicity response, and ultimately, led to tumor control. Our findings suggest that LUNX is a lung cancer targetable-immunogenic antigen. The proportion of lung cancers responding to LUNX-targeting therapy could be expanded substantially by immunogenic chemotherapy that induces senescence-associated translocation of LUNX to the plasma membrane.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258599
Author(s):  
Elnaz Abbasifarid ◽  
Azam Bolhassani ◽  
Shiva Irani ◽  
Fattah Sotoodehnejadnematalahi

Cervical cancer is the most common malignant tumor in females worldwide. Human papillomavirus (HPV) infection is associated with the occurrence of cervical cancer. Thus, developing an effective and low-cost vaccine against HPV infection, especially in developing countries is an important issue. In this study, a novel HPV L1-E7 fusion multiepitope construct designed by immunoinformatics tools was expressed in bacterial system. HEK-293T cells-derived exosomes were generated and characterized to use as a carrier for crocin and curcumin compounds. The exosomes loaded with crocin and curcumin compounds as a chemotherapeutic agent (ExoCrocin and ExoCurcumin) were used along with the L1-E7 polypeptide for evaluation of immunological and anti-tumor effects in C57BL/6 mouse model. In vitro studies showed that ExoCrocin and ExoCurcumin were not cytotoxic at a certain dose, and they could enter tumor cells. In vivo studies indicated that combination of the L1-E7 polypeptide with ExoCrocin or ExoCurcumin could produce a significant level of immunity directed toward Th1 response and CTL activity. These regimens showed the protective and therapeutic effects against tumor cells (the percentage of tumor-free mice: ~100%). In addition, both ExoCrocin and ExoCurcumin represented similar immunological and anti-tumor effects. Generally, the use of exosomal crocin or curcumin forms along with the L1-E7 polypeptide could significantly induce T-cell immune responses and eradicate tumor cells.


Sign in / Sign up

Export Citation Format

Share Document