scholarly journals RARE-07. THE LANDSCAPE OF GENOMIC ALTERATIONS IN ADAMANTINOMATOUS CRANIOPHARYNGIOMAS

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii443-iii443
Author(s):  
Prasidda Khadka ◽  
Eric Prince ◽  
Sophie Lu ◽  
Sandro Santagata ◽  
Keith Ligon ◽  
...  

Abstract INTRODUCTION Adamantinomatous craniopharyngiomas (ACPs) are characterized by activating mutations in the CTNNB1 gene. Here we perform a comprehensive genomic analysis of 23 ACPs to define the landscape of genomic alterations in this disease. METHODS We performed whole-genome sequencing of 24 ACPs and their matched normal tissues. We used Mutect 2.0 to detect mutations and indels in these samples and MutSig2CV to identify significant mutations. Copy numbers were called using the GATK4 pipeline and GISTIC 2.0 was applied to identify significant alterations. Finally, SvABA was applied to identify genome-wide structural variants and rearrangements. RESULTS 18/24 (75%) of the sequenced ACPs harbored activating mutations in exon 3 of CTNNB1 gene with an average variant allele fraction (VAF) of 0.4±0.1. These mutations have previously been shown to activate the WNT signaling pathway in these tumors. No other significantly recurrent mutations were detected in our samples. The ACPs were quiet with regard to copy number alterations and no recurrent amplifications or deletions were detected. 528 structural variations and rearrangements were detected in total in all 24 samples with an average of 22 variants per sample. Gene-Set Enrichment Analysis (GSEA) of the RNAseq data revealed upregulation of WNT/B-catenin (FDR q-value <0.25) in the CTNNB1 mutant samples compared to CTNNB1 WT samples. CONCLUSION Our study identified previously described activating CTNNB1 mutations in the majority of ACPs. In addition, we identified several rearrangements and structural variations in these tumors that could play an important role in the pathogenesis of the disease.

2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Shufang Wang ◽  
Xinlong Huo

Background: Estrogen-related receptor alpha (ESRRA) was reported to play an important role in multiple biological processes of neoplastic diseases. The roles of ESRRA in endometrial cancer have not been fully investigated yet. Methods: Expression data and clinicopathological data of patients with uteri corpus endometrial carcinoma (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Comprehensive bioinformatics analysis was performed, including receiver operating characteristics (ROC) curve analysis, Kaplan-Meier survival analysis, gene ontology (GO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Immunohistochemistry was used to detect the protein expression level of ESRRA and CCK-8 assay was performed to evaluate the effect of ESRRA on the proliferation ability. Results: A total of 552 UCEC tissues and 35 normal tissues were obtained from the TCGA database. The mRNA and protein expression level of ESRRA was highly elevated in UCEC compared with normal tissues, and was closely associated with poor prognosis. ROC analysis indicated a very high diagnostic value of ESRRA for patients with UCEC. GO and GSEA functional analysis showed that ESRRA might be mainly involved in cellular metabolism processes, in turn, tumorigenesis and progression of UCEC. Knockdown of ESRRA inhibited the proliferation of UCEC cells in vitro. Further immune cell infiltration demonstrated that ESRRA enhanced the infiltration level of neutrophil cell and reduced that of T cell (CD4+ naïve), NK cell, and cancer associated fibroblast (CAF). The alteration of immune microenvironment will greatly help in developing immune checkpoint therapy for UCEC. Conclusions: Our study comprehensively analyzed the expression level, clinical value, and possible mechanisms of action of ESRRA in UCEC. These findings showed that ESRRA might be a potential diagnostic and therapeutic target.


2021 ◽  
Author(s):  
Longhua Feng ◽  
Pengjiang Cheng ◽  
Zhengyun Feng ◽  
Xiaoyu Zhang

Abstract Background: To investigate the role of transmembrane p24 trafficking protein 2 (TMED2) in lung adenocarcinoma (LUAD) and determine whether TMED2 knockdown could inhibit LUAD in vitro and in vivo.Methods: TIMER2.0, Kaplan-Meier plotter, gene set enrichment analysis (GSEA), Target Gene, and pan-cancer systems were used to predict the potential function of TMED2. Western blotting and immunohistochemistry were performed to analyze TMED2 expression in different tissues or cell lines. The proliferation, development, and apoptosis of LUAD were observed using a lentivirus-mediated TMED2 knockdown. Bioinformatics and western blot analysis of TMED2 against inflammation via the TLR4/NF-κB signaling pathway were conducted. Results: TMED2 expression in LUAD tumor tissues was higher than that in normal tissues and positively correlated with poor survival in lung cancer and negatively correlated with apoptosis in LUAD. The expression of TMED2 was higher in tumors or HCC827 cells. TMED2 knockdown inhibited LUAD development in vitro and in vivo and increased the levels of inflammatory factors via the TLR4/NF-κB signaling pathway. TMED2 was correlated with TME, immune score, TME-associated immune cells, their target markers, and some mechanisms and pathways, as determined using the TIMER2.0, GO, and KEGG assays.Conclusions: TMED2 may regulate inflammation in LUAD through the TLR4/NF-κB signaling pathway, and enhance the proliferation, development, and prognosis of LUAD by regulating inflammation, which provide a new strategy for treating LUAD by regulating inflammation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Jong-Whi Park ◽  
Felix Sahm ◽  
Bianca Steffl ◽  
Isabel Arrillaga-Romany ◽  
Daniel Cahill ◽  
...  

Abstract BACKGROUND Decitabine (DAC)-incorporated DNA binds DNMT1 enzyme and subsequently triggers DNMT1 degradation. Previously, we showed that DAC can mediate the anti-tumor effect in a preclinical model of IDH-mutant gliomas. Here, we further investigate molecular determinants of response to DAC in gliomas. METHODS DAC response was assessed by soft agar anchorage independent growth assays and cell proliferation measurements. Patient-derived IDH-mutant chromosome 1p/19q codeleted (codel) and non-codel glioma lines upon vehicle and DAC treatment were used for RNA sequencing and Gene Set Enrichment Analysis (GSEA). RESULTS We found that DAC treatment is effective in high TERT-expressing gliomas including IDH-mutant and IDH-wildtype glioma lines. In contrast, pharmacological inhibition of TERT reduces DAC response in glioma lines. Interestingly, transcriptomic profiling showed that DAC reduces the expression of TERT, along with increased CDKN1A/p21 expression. We experimentally validated that TERT expression depends on CDKN1A/p21. Furthermore, p53 is required for DAC-mediated CDKN1A/p21 induction. Importantly, DAC-mediated proliferation defects in TERT-proficient glioma cells are abolished by DNMT1 knockdown, indicative of an expected DAC mechanism. CONCLUSIONS DAC could elicit the pronounced anti-tumor response in IDH-mutant codel oligodendroglioma and IDH-wildtype glioblastoma with TERT activating mutations.


2021 ◽  
Vol 10 ◽  
Author(s):  
Wenhua Xu ◽  
Wenna Yang ◽  
Chunfeng Wu ◽  
Xiaocong Ma ◽  
Haoyu Li ◽  
...  

Enolase 1 (ENO1) is an oxidative stress protein expressed in endothelial cells. This study aimed to investigate the correlation of ENO1 with prognosis, tumor stage, and levels of tumor-infiltrating immune cells in multiple cancers. ENO1 expression and its influence on tumor stage and clinical prognosis were analyzed by UCSC Xena browser, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), and GTEx Portal. The ENO1 mutation analysis was performed by cBio Portal, and demonstrated ENO1 mutation (1.8%) did not impact on tumor prognosis. The relationship between ENO1 expression and tumor immunity was analyzed by Tumor Immune Estimation Resource (TIMER) and GEPIA. The potential functions of ENO1 in pathways were investigated by Gene Set Enrichment Analysis. ENO1 expression was significantly different in tumor and corresponding normal tissues. ENO1 expression in multiple tumor tissues correlated with prognosis and stage. ENO1 showed correlation with immune infiltrates including B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells, and tumor purity. ENO1 was proved to be involved in DNA replication, cell cycle, apoptosis, glycolysis process, and other processes. These findings indicate that ENO1 is a potential prognostic biomarker that correlates with cancer progression immune infiltration.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang-Jie Wu ◽  
Ai-Tao Nai ◽  
Gui-Cheng He ◽  
Fei Xiao ◽  
Zhi-Min Li ◽  
...  

Abstract Background Dihydropyrimidinase like 2 (DPYSL2) has been linked to tumor metastasis. However, the function of DPSY2L in lung adenocarcinoma (LUAD) is yet to be explored. Methods Herein, we assessed DPYSL2 expression in various tumor types via online databases such as Oncomine and Tumor Immune Estimation Resource (TIMER). Further, we verified the low protein and mRNA expressions of DPYSL2 in LUAD via the ULCAN, The TCGA and GEPIA databases. We applied the ROC curve to examine the role of DPYSL2 in diagnosis. The prognostic significance of DPYSL2 was established through the Kaplan–Meier plotter and the Cox analyses (univariate and multivariate). TIMER was used to explore DPYSL2 expression and its connection to immune infiltrated cells. Through Gene Set Enrichment Analysis, the possible mechanism of DPYSL2 in LUAD was investigated. Results In this study, database analysis revealed lower DPYSL2 expression in LUAD than in normal tissues. The ROC curve suggested that expression of DPYSL2 had high diagnostic efficiency in LUAD. The DPYSL2 expression had an association with the survival time of LUAD patients in the Kaplan–Meier plotter and the Cox analyses. The results from TIMER depicted a markedly positive correlation of DPYSL2 expression with immune cells infiltrated in LUAD, such as macrophages, dendritic cells, CD4+ T cells, and neutrophils. Additionally, many gene markers for the immune system had similar positive correlations in the TIMER analysis. In Gene Set Enrichment Analysis, six immune-related signaling pathways were associated with DPYSL2. Conclusions In summary, DPYSL2 is a novel biomarker with diagnostic and prognostic potential for LUAD as well as an immunotherapy target. Highlights Expression of DPYSL2 was considerably lower in LUAD than in normal tissues. Investigation of multiple databases showed a high diagnostic value of DPYSL2 in LUAD. DPYSL2 can independently predict the LUAD outcomes. Immune-related mechanisms may be potential ways for DPYSL2 to play a role in LUAD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ya Jun Liu ◽  
Alphonse Houssou Hounye ◽  
Zheng Wang ◽  
Xiaowei Liu ◽  
Jun Yi ◽  
...  

Cholangiocarcinoma (CCA) is featured by common occurrence and poor prognosis. Autophagy is a biological process that has been extensively involved in the progression of tumors. Long noncoding RNAs (lncRNAs) have been discovered to be critical in diagnosing and predicting various tumors. It may be valuable to elaborate autophagy-related lncRNAs (ARlncRNAs) in CCA, and indeed, there are still few studies concerning the role of ARlncRNAs in CCA. Here, a prognostic ARlncRNA signature was constructed to predict the survival outcome of CCA patients. Through identification, three differentially expressed ARlncRNAs (DEARlncRNAs), including CHRM3.AS2, MIR205HG, and LINC00661, were screened and were considered predictive signatures. Furthermore, the overall survival (OS) of patients with high-risk scores was significantly lower than that of patients with low scores. Interestingly, the risk score was an independent factor for the OS of patients with CCA. Moreover, receiver operating characteristic (ROC) curve analysis showed that the screened and constructed prognosis signature for 1 year (AUC = 0.884), 3 years (AUC =0.759), and 5 years (AUC = 0.788) presented a high score of accuracy in predicting OS of CCA patients. Gene set enrichment analysis (GSEA) revealed that the three DEARlncRNAs were significantly enriched in CCA-related signaling pathways, including “pathways of basal cell carcinoma”, “glycerolipid metabolism”, etc. Quantitative real-time PCR (qRT-PCR) showed that expressions of CHRM3.AS2, MIR205HG, and LINC00661 were higher in CCA tissues than those in normal tissues, similar to the trends detected in the CCA dataset. Furthermore, Pearson’s analysis reported an intimate correlation of the risk score with immune cell infiltration, indicating a predictive value of the signature for the efficacy of immunotherapy. In addition, the screened lncRNAs were found to have the ability to modulate the expression of mRNAs by interacting with miRNAs based on the established lncRNA-miRNA-mRNA network. In conclusion, our study develops a novel nomogram with good reliability and accuracy to predict the OS of CCA patients, providing a significant guiding value for developing tailored therapy for CCA patients.


2020 ◽  
Vol 9 (9) ◽  
pp. 2844
Author(s):  
Sayeh Saravi ◽  
Eriko Katsuta ◽  
Jeyarooban Jeyaneethi ◽  
Hasnat A. Amin ◽  
Matthias Kaspar ◽  
...  

Background: H2AX can be of prognostic value in breast cancer, since in advanced stage patients with high levels, there was an association with worse overall survival (OS). However, the clinical relevance of H2AX in ovarian cancer (OC) remains to be elucidated. Methods: OC H2AX expression studied using the TCGA/GTEX datasets. Subsequently, patients were classified as either high or low in terms of H2AX expression to compare OS and perform gene set enrichment. qRT-PCR validated in-silico H2AX findings followed by immunohistochemistry on a tissue microarray. The association between single nucleotide polymorphisms in the area of H2AX; prevalence and five-year OC survival was tested in samples from the UK Biobank. Results: H2AX was significantly overexpressed in OCs compared to normal tissues, with higher expression associated with better OS (p = 0.010). Gene Set Enrichment Analysis demonstrated gene sets involved in G2/M checkpoint, DNA repair mTORC1 signalling were enriched in the H2AX highly expressing OCs. Polymorphisms in the area around the gene were associated with both OC prevalence (rs72997349-C, p = 0.005) and worse OS (rs10790282-G, p = 0.011). Finally, we demonstrated that H2AX gene expression correlated with γ-H2AX staining in vitro. Conclusions: Our findings suggest that H2AX can be a novel prognostic biomarker for OC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 355-355 ◽  
Author(s):  
Kristine Misund ◽  
Niamh Keane ◽  
Yan W Asmann ◽  
Scott Van Wier ◽  
Daniel Riggs ◽  
...  

Abstract MYC expression is frequently dysregulated in multiple myeloma (MM). In one comprehensive study, MYC structural variations (SV) were found in nearly half of MM cases (Affer et al. Leukemia 2014). The prevalence was higher in hyperdiploid (HRD) tumors (65%) compared to non-hyperdiploid (NHRD) tumors (36%). The large amount of tumor DNA required for all of the genomic studies performed may have biased the samples analyzed (e.g., to those with higher tumor burdens). To validate the findings of recurrent MYC SV in another dataset, we analyzed the CoMMpass data. We analyzed long-insert whole genome sequencing (WGS) data from diagnostic samples in 420 patients from the IA7 release (dbGAP phs000748) for SV. The results of clinical data, processed WES (SNV), RNASeq (gene expression) and WGS (copy number) data from IA8 (http://research.themmrf.org) were used to calculate survival, RAS and NFKB pathway mutation (WES), TC class (RNA), NFKB index (RNA) and hyperdiploid index (WGS). MYC SVs were identified in 38% of tumors. They were present in 53% HRD and 28% NHRD, and by TC in 55% D1, 43% D2, 36% MMSET, 26% MAF, 13% CCND. Juxtaposition of an Ig enhancer (IgH, IgK, IgL) close to MYC was the most common MYC SV, representing ~40% of the MYC SV. Other enhancers identified have mostly been reported previously, with the most frequent being NSMCE2 (12% of SV) and TXNDC5 (5% of SV). Intrachromosomal SV (deletions, inversions, duplications) not associated with any known enhancer were also frequent (18% of SV). As expected, MYC expression was higher in tumors with MYC SV compared to those without (~2.4 fold, p-value<0.0001). We used Gene Set Enrichment Analysis (GSEA) to identify activated pathways that might substitute for MYC in HRD patients without MYC SV and observed significant activation of the NFkB pathway. Interestingly, examining patients with RAS/MAPK pathway (NRAS, KRAS, BRAF, FGFR3 - abbreviated RAS) mutations (identified in 50% of all patients) the same pattern was observed: in the absence of RAS mutation, there was a significantly higher NFkB index. In general, the HRD tumors seem to have either activation of RAS and/or MYC, or activation of NFkB (Figure). There was no difference in overall survival in patients with versus those without MYC SV. We developed a clinically applicable sequencing platform to identify MYC SV, which cannot be reliably identified by FISH. We sought to validate this targeted capture approach, where in addition to the coding exons of 81 interesting genes described previously (M3P), we also pulled down the region surrounding MYC (2 Mb), IgH (0.5 Mb), IgK (50 kb) and IgL (100 kb) allowing us to additionally identify SV in MYC and Ig loci. Using this approach we identified IgH translocations in 29/30 samples with translocations previously identified by FISH (97%). Moreover, we identified MYC SV in 19/22 patients with SV previously identified by mate-pair WGS (86%). Importantly, sequencing identified the precise translocation breakpoint, and identity of the enhancer dysregulating MYC, which may be important variables. In one informative patient two different MYC SV were present at diagnosis, only one of which was still present following a partial response to four cycles of lenalidomide and dexamethasone. This suggests that the two MYC SV are in different subclones, one of which was much more sensitive to the treatment. Interestingly, the enhancer dysregulating MYC in the sensitive subclone harbors 5 strong Ikaros binding sites identified by ChIPseq, suggesting one intriguing mechanism for sensitivity to lenalidomide. To summarize, we verified in a large dataset that MYC expression is frequently dysregulated by SV in MM (38%), and the RAS/MAPK (50%) and NFKB (23%) pathways are frequently activated by mutations. Surprisingly, given their generally good prognosis, nearly half of HRD tumors seem to be MYC driven, while this is true for only a quarter of NHRD tumors. HRD tumors not driven by MYC or RAS appear to be driven by NFKB. Remarkably, the pathways most commonly activated by mutation in MM: CCND, MYC, RAS, NFKB are common to many cancers and have been studied extensively individually. To understand their clinical impact in MM we have developed a comprehensive custom capture sequencing panel that identified 97% of IgH translocations, 86% of MYC SV, and as well as SNV and CNV of 81 recurrently mutated genes. It will be important to include such a comprehensive genetic analysis to complement clinical trials in the future. Figure. Figure. Disclosures Stewart: Bristol Myers Squibb: Consultancy; Celgene: Consultancy; Takeda Oncology: Consultancy; Janssen Pharmaceuticals: Consultancy.


2021 ◽  
Vol 15 (15) ◽  
pp. 1319-1331
Author(s):  
Li Li ◽  
Hui-Jing Situ ◽  
Wen-Cheng Ma ◽  
Xuan Liu ◽  
Lu-Lu Wang

Aim: To investigate the effect of aberrant expression of DHRS1 on hepatocellular carcinoma (HCC). Materials & methods: Kaplan–Meier and Cox regression analyses were performed to evaluate the correlation between DHRS1 and overall survival. Gene set enrichment analysis was performed to explore the potential function of DHRS1 in HCC. Results: Multiple data analysis revealed that DHRS1 mRNA and protein expression level were remarkably lower in HCC than that in normal tissues. In survival analysis, patients with low DHRS1 expression presented a poorer prognosis, and was an independent risk factor for HCC. Conclusion: Decreased DHRS1 expression may be a potential predictor of poor prognosis in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


Sign in / Sign up

Export Citation Format

Share Document