Complementary Activation of Ccnd, MYC, RAS and NFkB By Mutations in Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 355-355 ◽  
Author(s):  
Kristine Misund ◽  
Niamh Keane ◽  
Yan W Asmann ◽  
Scott Van Wier ◽  
Daniel Riggs ◽  
...  

Abstract MYC expression is frequently dysregulated in multiple myeloma (MM). In one comprehensive study, MYC structural variations (SV) were found in nearly half of MM cases (Affer et al. Leukemia 2014). The prevalence was higher in hyperdiploid (HRD) tumors (65%) compared to non-hyperdiploid (NHRD) tumors (36%). The large amount of tumor DNA required for all of the genomic studies performed may have biased the samples analyzed (e.g., to those with higher tumor burdens). To validate the findings of recurrent MYC SV in another dataset, we analyzed the CoMMpass data. We analyzed long-insert whole genome sequencing (WGS) data from diagnostic samples in 420 patients from the IA7 release (dbGAP phs000748) for SV. The results of clinical data, processed WES (SNV), RNASeq (gene expression) and WGS (copy number) data from IA8 (http://research.themmrf.org) were used to calculate survival, RAS and NFKB pathway mutation (WES), TC class (RNA), NFKB index (RNA) and hyperdiploid index (WGS). MYC SVs were identified in 38% of tumors. They were present in 53% HRD and 28% NHRD, and by TC in 55% D1, 43% D2, 36% MMSET, 26% MAF, 13% CCND. Juxtaposition of an Ig enhancer (IgH, IgK, IgL) close to MYC was the most common MYC SV, representing ~40% of the MYC SV. Other enhancers identified have mostly been reported previously, with the most frequent being NSMCE2 (12% of SV) and TXNDC5 (5% of SV). Intrachromosomal SV (deletions, inversions, duplications) not associated with any known enhancer were also frequent (18% of SV). As expected, MYC expression was higher in tumors with MYC SV compared to those without (~2.4 fold, p-value<0.0001). We used Gene Set Enrichment Analysis (GSEA) to identify activated pathways that might substitute for MYC in HRD patients without MYC SV and observed significant activation of the NFkB pathway. Interestingly, examining patients with RAS/MAPK pathway (NRAS, KRAS, BRAF, FGFR3 - abbreviated RAS) mutations (identified in 50% of all patients) the same pattern was observed: in the absence of RAS mutation, there was a significantly higher NFkB index. In general, the HRD tumors seem to have either activation of RAS and/or MYC, or activation of NFkB (Figure). There was no difference in overall survival in patients with versus those without MYC SV. We developed a clinically applicable sequencing platform to identify MYC SV, which cannot be reliably identified by FISH. We sought to validate this targeted capture approach, where in addition to the coding exons of 81 interesting genes described previously (M3P), we also pulled down the region surrounding MYC (2 Mb), IgH (0.5 Mb), IgK (50 kb) and IgL (100 kb) allowing us to additionally identify SV in MYC and Ig loci. Using this approach we identified IgH translocations in 29/30 samples with translocations previously identified by FISH (97%). Moreover, we identified MYC SV in 19/22 patients with SV previously identified by mate-pair WGS (86%). Importantly, sequencing identified the precise translocation breakpoint, and identity of the enhancer dysregulating MYC, which may be important variables. In one informative patient two different MYC SV were present at diagnosis, only one of which was still present following a partial response to four cycles of lenalidomide and dexamethasone. This suggests that the two MYC SV are in different subclones, one of which was much more sensitive to the treatment. Interestingly, the enhancer dysregulating MYC in the sensitive subclone harbors 5 strong Ikaros binding sites identified by ChIPseq, suggesting one intriguing mechanism for sensitivity to lenalidomide. To summarize, we verified in a large dataset that MYC expression is frequently dysregulated by SV in MM (38%), and the RAS/MAPK (50%) and NFKB (23%) pathways are frequently activated by mutations. Surprisingly, given their generally good prognosis, nearly half of HRD tumors seem to be MYC driven, while this is true for only a quarter of NHRD tumors. HRD tumors not driven by MYC or RAS appear to be driven by NFKB. Remarkably, the pathways most commonly activated by mutation in MM: CCND, MYC, RAS, NFKB are common to many cancers and have been studied extensively individually. To understand their clinical impact in MM we have developed a comprehensive custom capture sequencing panel that identified 97% of IgH translocations, 86% of MYC SV, and as well as SNV and CNV of 81 recurrently mutated genes. It will be important to include such a comprehensive genetic analysis to complement clinical trials in the future. Figure. Figure. Disclosures Stewart: Bristol Myers Squibb: Consultancy; Celgene: Consultancy; Takeda Oncology: Consultancy; Janssen Pharmaceuticals: Consultancy.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
James T McParland ◽  
Evanthia Pashos ◽  
Daniel J Rader ◽  
Marina Cuchel

Aim: The ATP-binding cassette transporter 1 (ABCA1) is a membrane protein well known for its role in cholesterol efflux and HDL formation. Recently, ABCA1 has been implicated as playing a key role in other processes, such as insulin secretion and inflammatory response. We sought to further investigate these potential roles through a quantitative proteomics approach. Specifically, we hypothesized that we could detect differential protein signatures in the plasma of Tangier patients that correspond to pathways involved in diabetes and inflammation. Methods: We used SOMAscan® technology (SomaLogic, Boulder, CO, USA) to analyze plasma collected from 5 Tangier disease patients (homozygotes or compound heterozygotes for functional ABCA1 mutations) and 7 normolipidemic controls. We tested for differences in the levels of approximately 1,000 plasma proteins using a nonparametric test (KS). We then performed Ingenuity Canonical Pathway analysis to examine if proteins linked to diabetes and inflammation pathways were significantly more likely to be differentially abundant in the plasma. We corroborated the results using Gene Set Enrichment Analysis (GSEA). Results: We found an enrichment in differentially abundant proteins involved in type II diabetes mellitus signaling (p-value=0.0002) and inflammatory pathways, such as granulocyte adhesion and diapedesis (p-value=2.2*10 -12 ). These results were also corroborated by GSEA, where gene sets corresponding to GO biological processes such as immune response (p-value=0.008) and inflammatory response (p-value=0.032) ranked at the top of the enrichment results. Conclusions: The results from this pilot study support the concept that ABCA1 is implicated in pathways affecting immune and inflammatory response and type II diabetes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4423-4423 ◽  
Author(s):  
Caoilfhionn Connolly ◽  
Alokkumar Jha ◽  
Alessandro Natoni ◽  
Michael E O'Dwyer

Abstract Introduction Advances in genomics have highlighted the potential for individualized prognostication and therapy in multiple myeloma (MM). Previously developed gene expression signatures have identified patients with high risk (Kuiper et al, Blood 2016) however, they provide few insights into underlying disease biology thereby limiting their use in informing treatment decisions. Glycosylation is deregulated in MM (Glavey et al), and potential consequences include altered cell adhesion, signaling, immune evasion and drug resistance. In this study we have utilized RNA sequencing data from the IA7 CoMMpass cohort to characterize the expression profile of genes involved in glycosylation. This represents a novel approach to identify a distinct molecular pathway related to outcome, which is potentially actionable. Methods A pathway based approach was adopted to evaluate genes implicated in glycosylation, including the generation of selectin ligands. A literature review and KEGG pathway analysis of pathways relating to O-glycans, N-glycans, sialic acid metabolism, glycolipid synthesis and metabolism was completed. RNA Cufflinks-gene level FPKM expression of 458 patients enrolled in the IA7 cohort of the Multiple Myeloma Research Foundation (MMRF) CoMMpass trial (NCT145429) were analysed as derivation cohort. We developed expression cut-offs using a novel approach of adjusted existing linear regression model to define the gene expression cut-off by applying 3rd Quartile data (q1+q2/2-qmin). The analysis of overall survival (OS) was completed using adjusted 'kpas' R-package according to our cut-off model. Association between individual transcripts and OS was analyzed with log-rank test. Genes with p-value <0.2 were used in subsequent prioritization analysis. This cut-off methodology was employed to define the nearest neighbor for a gene for Gene Set Enrichment Analysis (GSEA). As far as 4th neighbor above and below the cut off was used to have centrally driven gene selection method for prioritization. The gene signature was validated in GSE2658 (Shaughnessy et al) dataset. Results Initial analysis yielded 184 prospective genes. 147 were significant on univariate analysis. Following further prioritization of these genes, we identified thirteen genes that had significant impact upon outcomes (GiMM13). Figure 1 reveals that GiMM13 signature has a significant correlation with inferior OS (HR 4.66 p-value 0.022). The prognostic impact of stratifying GiMM13 positive (High risk) or GiMM13 negative (Low risk) by ISS stage was evaluated. In Table 1. Kaplan Meier estimates generated for GiMM13 (High) or GiMM13 (Low) stratified by ISS are compared statistically using the log rank test. The prognostic ability of GiMM13 to synthesize distinct subgroups relative to each ISS stage is shown in Figure 2. ISS1-Low is the the lowest risk group with best prognosis. Hazard ratios relative to the ISS1-Low group were 1.8, p-value 0.029 (ISS2-Low), 2.1, p-value 0.031 (ISS3-Low), 4.3, p-value 0.04 (ISS1-HR), 5.9, p-value 0.039 (ISS2-HR) and 3.1, p-value 0.001 (ISS3-HR). The GiMM13 signature enhances the prognostic ability of ISS to identify patients with inferior or superior outcomes respectively. Conclusion While the therapeutic armamentarium for MM has expanded considerably, the significant molecular heterogeneity in the disease still poses a significant challenge. Our data suggests aberrant transcription of glycosylation genes, involved predominantly in selectin ligand synthesis, is associated with inferior survival outcomes and may help identify patients likely to benefit from treatment with agents targeting aberrant glycosylation, e.g. E-selectin inhibitor. Consistent with recent findings in chemoresistant minimal residual disease (MRD) (Paiva et al, Blood 2016), it would appear that O-glycosylation, rather than N-glycosylation is most significantly implicated in this biological processes conferring inferior outcomes. In conclusion, using a novel pathway-based approach to identify a 13-gene signature (GiMM13), we have developed a robust tool that can refine patient prognosis and inform clinical decision-making. Acknowledgment These data were generated as part of the Multiple Myeloma Research Foundation Personalized Medicine Initiatives (https://research.themmrf.org and www.themmrf.org). Disclosures O'Dwyer: Glycomimetics: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 11515-11515
Author(s):  
Sangkyu Lee ◽  
Joseph O. Deasy ◽  
Jung Hun Oh ◽  
Antonio Di Meglio ◽  
Sandrine Boyault ◽  
...  

11515 Background: Many BC survivors report fatigue. The relevant genomic correlates of fatigue after BC are not well understood. We applied a previously validated machine learning methodology (Oh 2017) to GWAS data to identify biological correlates of fatigue induced after tx. Methods: We analyzed 3825 BC pts with GWAS data (Illumina InfiniumExome24 v 1.1) from the CANTO study (NCT01993498). The outcome of this study was post-tx fatigue 1 year after the end of primary chemotherapy/radiotherapy/surgery using the EORTC C30 fatigue subscale (overall fatigue) and the EORTC FA 12 fatigue domains (physical/emotional/cognitive). For each domain, we limited the study group to those with zero baseline fatigue and defined severe fatigue change as score increase above the third quartile. We tested univariate correlations between severe fatigue in each domain and 496539 SNPs as well as relevant clinical variables. The machine learning prediction model based on preconditioning random forest regression (PRFR) (Oh et al., 2017), was then built using the SNPs with ancestry adjusted univariate p-value < 0.001 and clinical variables with Bonferroni adjusted p-value < 0.05. The model was validated in a holdout subset of the cohort. Gene set enrichment analysis (GSEA) was performed using MetaCore to identify key biological correlates relevant to tx-induced fatigue. Results: Distinct results were found by fatigue domain (table). GSEA showed that the cognitive fatigue model SNPs included biomarkers for cognitive disorders (p = 1.6 x 10-12) and glutamatergic synaptic transmission (p = 1.6 x 10-8). Conclusions: A SNP based model had differential performance by fatigue domain, with a potential genetic role on risk and biology for tx induced cognitive fatigue. Further research to explore biomarkers of tx induced fatigue are needed. [Table: see text]


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xi-Juan Zhang ◽  
Zhong-Hua Cui ◽  
Yan Dong ◽  
Xiu-Wen Liang ◽  
Yan-Xin Zhao ◽  
...  

Abstract Osteoporosis (OP) is significant and debilitating comorbidity of chronic obstructive pulmonary disease (COPD). We hypothesize that genetic variance identified with OP may also play roles in COPD. We have conducted a large-scale relation data analysis to explore the genes implicated with either OP or COPD, or both. Each gene linked to OP but not to COPD was further explored in a mega-analysis and partial mega-analysis of 15 independently collected COPD RNA expression datasets, followed by gene set enrichment analysis (GSEA) and literature-based pathway analysis to explore their functional linked to COPD. A multiple linear regression (MLR) model was built to study the possible influence of sample size, population region, and study date on the gene expression data in COPD. At the first step of the analysis, we have identified 918 genes associated with COPD, 581 with OP, and a significant overlap (P&lt;2.30e-140; 210 overlapped genes). Partial mega-analysis showed that, one OP gene, GPNMB presented significantly increased expression in COPD patients (P-value = 0.0018; log fold change = 0.83). GPNMB was enriched in multiple COPD pathways and plays roles as a gene hub formulating multiple vicious COPD pathways included gene MMP9 and MYC. GPNMB could be a novel gene that plays roles in both COPD and OP. Partial mega-analysis is valuable in identify case-specific genes for COPD.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2057-2057
Author(s):  
Eva De Smedt ◽  
Ken Maes ◽  
Stefan Verhulst ◽  
Hui Lui ◽  
Alboukadel Kassambara ◽  
...  

Abstract Multiple myeloma (MM) is a genetic highly heterogeneous plasma cell malignancy. In MM, the RAS/MAPK pathway is the most frequently mutated pathway, leading to aberrant MEK/ERK and PI3K/Akt signaling and thus stimulating MM cell growth and survival. Increasing evidence indicates that next to their classical oncogenic effects, RAS proteins can also induce growth inhibitory effects and apoptosis. These tumor suppressive effects are mainly mediated through the Ras-Association Domain Family (RASSF), a group of 10 RAS effector proteins (RASSF1-10) and numerous isoforms. Based on the localization of the Ras-association (RA) domain this family is further subdivided into two groups. RASSF1 to 6 harbor a C-terminal RA domain and are termed the classical group, while RASSF7-10 contain a N-terminal RA domain and are referred to as non-classical RASSF proteins. The classical RASSF members also carry a SARAH domain on the C-terminus, allowing the RASSF proteins to bind each other and the mammalian sterile 20-like kinases MST and MST-2. Currently, no data about the biological role of RASSF proteins in the pathogenesis of MM is available. Here, we first investigated the expression of the classical RASSF proteins RASSF1-6 in MM using publically available gene expression profiling data of 2 independent newly diagnosed patient cohorts (namely the Heidelberg-Montpellier and the UAMS-TT2 cohort) and 1 cohort of relapsed patients (Mulligan-cohort). We report that RASSF4 was the only classical RASSF protein that was consistently found downregulated in MM cells compared to normal bone marrow plasma cells, correlating with a bad prognosis in all cohorts. Treatment with epigenetic modulating agents including histone deacetylase inhibitors (HDACi) and DNA methyltransferases inhibitors significantly increased RASSF4 expression both in vitro and in vivo, indicating that RASSF4 downregulation in MM is due to epigenetic silencing. Forced RASSF4 expression induced a strong G2-phase arrest and caspase-3 mediated apoptosis in human MM cell lines and strongly reduced the viability of primary CD138+ MM cells. Moreover, RASSF overexpression significantly reduced in vivotumor growth. In addition, we showed RASSF4-MST1 binding and the activation of the downstream signaling pathways JNK/Jun, p38 and p53. RNA sequencing and gene set enrichment analysis following forced RASSF4 expression furthermore revealed downregulation of genes involved in protein metabolism, the unfolded protein response and translation. RASSF4 overexpression also sensitized MM cells to the proteasome inhibitor bortezomib, the specific MEK1/2 inhibitor trametinib and the ROS inducer Prima-1Met. Consequently, combining trametinib with HDACi, e.g. panobinostat, resulted in very strong synergistic anti-MM effects. In conclusion, we identified RASSF4 as a new potent tumor suppressor in MM that is epigenetically silenced in malignant plasma cells and provide a rationale for testing novel therapeutic strategies enhancing RASSF4 expression (using HDACi or gene therapy) in combination with MEK/ERK inhibitors and bortezomib. Disclosures Hose: Takeda: Other: Travel grant; EngMab: Research Funding; Sanofi: Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhou ◽  
Menghui Zhang ◽  
Yan Zhang ◽  
Xi Shi ◽  
Linlin Liu ◽  
...  

Multiple myeloma (MM) is a malignant disease of plasma cells, which remains incurable because of its unclear mechanism and drug resistance. Herein, we aimed to explore new biomarkers and therapeutic targets in MM. After screening differentially expressed genes (DEGs) in GSE6477 and GSE13591 dataset, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs using DAVID online database. The results indicated that the downregulated DEGs were mainly enriched in the immune-associated biological process. The protein–protein interaction network was constructed by STRING database, on which we performed module analysis and identified key genes. Gene set enrichment analysis (GSEA) and Kaplan–Meier analysis showed that RRM2 could be a novel biomarker in MM diagnosis. We further confirmed that novel RRM2 inhibitor osalmid inhibited MM cell proliferation and triggered cell cycle S phase arrest. Targeting RRM2 was expected to develop new therapeutic strategies for malignant MM.


Tumor Biology ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 4987-5005 ◽  
Author(s):  
Apostolos Zaravinos ◽  
Peggy Kanellou ◽  
George Ι. Lambrou ◽  
Demetrios A. Spandidos

2021 ◽  
Vol 22 (3) ◽  
pp. 1423
Author(s):  
Yuri D’Alessandra ◽  
Mattia Chiesa ◽  
Vera Vigorelli ◽  
Veronica Ricci ◽  
Erica Rurali ◽  
...  

Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) homeostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an important role in the development of CV disease, and increased susceptibility to infections. Here, we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of patients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes, and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the same biological processes, a consistent number of inflammatory genes coding for chemokines and cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in HSPCs, which are potentially responsible of progeny dysfunction.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 948
Author(s):  
Maria Oczkowicz ◽  
Tomasz Szmatoła ◽  
Małgorzata Świątkiewicz

It has been known for many years that excessive consumption of saturated fats has proatherogenic properties, contrary to unsaturated fats. However, the molecular mechanism covering these effects is not fully understood. In this paper, we aimed to identify differentially expressed genes (DEGs) using RNA-sequencing, following feeding pigs with different sources of fat. After comparison of adipose samples from three dietary groups (rapeseed oil (n = 6), beef tallow (n = 5), coconut oil (n = 5)), we identified 29 DEGs (adjusted p-value < 0.05, fold change > 1.3) between beef tallow and rapeseed oil and 2 genes between coconut oil and rapeseed oil groups. No differentially expressed genes were observed between coconut oil and beef tallow groups. Almost all 29 DEGs between rapeseed oil and beef tallow groups are connected to neurodegenerative, cardiovascular diseases, or cancer (e.g., PLAU, CYBB, NCF2, ZNF217, CHAC1, CTCFL). Functional analysis of these genes revealed that they are associated with fluid shear stress response, complement and coagulation cascade, ROS signaling, neurogenesis, and regulation of protein binding and protein catabolic processes. Furthermore, gene set enrichment analysis (GSEA) of the whole datasets from all three comparisons suggests that both beef tallow and coconut oil may trigger changes in the expression level of genes crucial in the pathogenesis of civilization diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
He Zhang ◽  
Baoai Han ◽  
Xingxing Han ◽  
Yuying Zhu ◽  
Hui Liu ◽  
...  

Recent evidence suggests that splicing factors (SFs) and alternative splicing (AS) play important roles in cancer progression. We constructed four SF-risk-models using 12 survival-related SFs. In Luminal-A, Luminal-B, Her-2, and Basal-Like BRCA, SF-risk-models for three genes (PAXBP1, NKAP, and NCBP2), four genes (RBM15B, PNN, ACIN1, and SRSF8), three genes (LSM3, SNRNP200, and SNU13), and three genes (SRPK3, PUF60, and PNN) were constructed. These models have a promising prognosis-predicting power. The co-expression and protein-protein interaction analysis suggest that the 12 SFs are highly functional-connected. Pathway analysis and gene set enrichment analysis suggests that the functional role of the selected 12 SFs is highly context-dependent among different BRCA subtypes. We further constructed four AS-risk-models with good prognosis predicting ability in four BRCA subtypes by integrating the four SF-risk-models and 21 survival-related AS-events. This study proposed that SFs and ASs were potential multidimensional biomarkers for the diagnosis, prognosis, and treatment of BRCA.


Sign in / Sign up

Export Citation Format

Share Document