EPCO-21. CORE REGULATORY CIRCUIT TRANSCRIPTION FACTORS DRIVE EXPRESSION FROM HIGH LEVEL AMPLICONS IN PEDIATRIC HIGH-GRADE GLIOMAS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Davy Deng ◽  
Frank Dubois ◽  
Alexander Crane ◽  
Ashot Harutyunyan ◽  
Rameen Beroukhim ◽  
...  

Abstract BACKGROUND Pediatric High-Grade Gliomas (pHGGs) show recurrent high-level amplifications around the oncogenes MET, MYCN and EGFR. However what drives expression of the oncogenes from these amplicons remains unclear. We aim to discover enhancers on these amplicons that are responsible for oncogene expressions and the core regulatory transcription factors (TFs) they bind. METHOD Using RNA-seq from 12 pHGG cell lines, we identified groups of high and low-expressing pHGG lines for MET, MYCN and EGFR. We then compared the H3K27Ac ChIP-seq between the two groups using diffbind. This allowed us to identify statistically significant peaks that are differentially activated in the oncogene-high v.s. oncogene-low expressing groups. Additionally, we overlapped the positions of these candidate oncogene enhancers with the regions that are recurrently incorporated into high-level amplicons based on published whole genome sequencing data. Using a previously defined set of core regulatory TFs we determined which TF binds the amplified oncogene enhancers and could be driving oncogenic expressions of MET, MYCN and EGFR in pHGGs. RESULTS We identify 3 cell lines for both the high- and low-expressing groups for each oncogene. Cell lines with high expression of the oncogene showed distinct enhancers with significant enrichment in H3K27Ac compared to the cell lines with low expression for each oncogene. Of all enhancers with enrichment high oncogene expression groups those with binding sites for known pHGG core regulatory circuit TF were preferentially incorporated into the high-level amplicons of the oncogene. We also identified core TFs that bind enhancers for MYCN, EGFR and MET as well as core TFs that are unique to a single oncogene. CONCLUSION We identified candidate core transcription factor that drives expression of multiple oncogenes in pHGG. These could serve as a potential novel therapeutic target for pHGGs with addiction to MYCN or RTK signaling.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 492 ◽  
Author(s):  
Weder Pereira de Menezes ◽  
Viviane Aline Oliveira Silva ◽  
Izabela Natália Faria Gomes ◽  
Marcela Nunes Rosa ◽  
Maria Luisa Corcoll Spina ◽  
...  

The 5’-methylthioadenosine phosphorylase (MTAP) gene is located in the chromosomal region 9p21. MTAP deletion is a frequent event in a wide variety of human cancers; however, its biological role in tumorigenesis remains unclear. The purpose of this study was to characterize the MTAP expression profile in a series of gliomas and to associate it with patients’ clinicopathological features. Moreover, we sought to evaluate, through glioma gene-edited cell lines, the biological impact of MTAP in gliomas. MTAP expression was evaluated in 507 glioma patients by immunohistochemistry (IHC), and the expression levels were associated with patients’ clinicopathological features. Furthermore, an in silico study was undertaken using genomic databases totalizing 350 samples. In glioma cell lines, MTAP was edited, and following MTAP overexpression and knockout (KO), a transcriptome analysis was performed by NanoString Pan-Cancer Pathways panel. Moreover, MTAP’s role in glioma cell proliferation, migration, and invasion was evaluated. Homozygous deletion of 9p21 locus was associated with a reduction of MTAP mRNA expression in the TCGA (The Cancer Genome Atlas) - glioblastoma dataset (p < 0.01). In addition, the loss of MTAP expression was markedly high in high-grade gliomas (46.6% of cases) determined by IHC and Western blotting (40% of evaluated cell lines). Reduced MTAP expression was associated with a better prognostic in the adult glioblastoma dataset (p < 0.001). Nine genes associated with five pathways were differentially expressed in MTAP-knockout (KO) cells, with six upregulated and three downregulated in MTAP. Analysis of cell proliferation, migration, and invasion did not show any significant differences between MTAP gene-edited and control cells. Our results integrating data from patients as well as in silico and in vitro models provide evidence towards the lack of strong biological importance of MTAP in gliomas. Despite the frequent loss of MTAP, it seems not to have a clinical impact in survival and does not act as a canonic tumor suppressor gene in gliomas.


2017 ◽  
Vol 5 (45) ◽  
Author(s):  
Ashraf A. Khan ◽  
Bijay K. Khajanchi ◽  
Sana A. Khan ◽  
Christopher A. Elkins ◽  
Steven L. Foley

ABSTRACT We report here the draft genome sequences of 15 ciprofloxacin-resistant Salmonella enterica strains with resistance to multiple other antibiotics, including aminoglycosides, β-lactams, sulfonamides, tetracycline, and trimethoprim, isolated from different imported foods. Three strains (NCTR75, NCTR281, and NCTR350) showed a high level of ciprofloxacin resistance compared to that of the other isolates. The whole-genome sequencing data provide a better understanding of the antibiotic resistance mechanisms and virulence properties of these isolates.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Silvania Da Veiga Leal ◽  
Daniel Ward ◽  
Susana Campino ◽  
Ernest Diez Benavente ◽  
Amy Ibrahim ◽  
...  

Abstract Background Cape Verde is an archipelago located off the West African coast and is in a pre-elimination phase of malaria control. Since 2010, fewer than 20 Plasmodium falciparum malaria cases have been reported annually, except in 2017, when an outbreak in Praia before the rainy season led to 423 autochthonous cases. It is important to understand the genetic diversity of circulating P. falciparum to inform on drug resistance, potential transmission networks and sources of infection, including parasite importation. Methods Enrolled subjects involved malaria patients admitted to Dr Agostinho Neto Hospital at Praia city, Santiago island, Cape Verde, between July and October 2017. Neighbours and family members of enrolled cases were assessed for the presence of anti-P. falciparum antibodies. Sanger sequencing and real-time PCR was used to identify SNPs in genes associated with drug resistance (e.g., pfdhfr, pfdhps, pfmdr1, pfk13, pfcrt), and whole genome sequencing data were generated to investigate the population structure of P. falciparum parasites. Results The study analysed 190 parasite samples, 187 indigenous and 3 from imported infections. Malaria cases were distributed throughout Praia city. There were no cases of severe malaria and all patients had an adequate clinical and parasitological response after treatment. Anti-P. falciparum antibodies were not detected in the 137 neighbours and family members tested. No mutations were detected in pfdhps. The triple mutation S108N/N51I/C59R in pfdhfr and the chloroquine-resistant CVIET haplotype in the pfcrt gene were detected in almost all samples. Variations in pfk13 were identified in only one sample (R645T, E668K). The haplotype NFD for pfmdr1 was detected in the majority of samples (89.7%). Conclusions Polymorphisms in pfk13 associated with artemisinin-based combination therapy (ACT) tolerance in Southeast Asia were not detected, but the majority of the tested samples carried the pfmdr1 haplotype NFD and anti-malarial-associated mutations in the the pfcrt and pfdhfr genes. The first whole genome sequencing (WGS) was performed for Cape Verdean parasites that showed that the samples cluster together, have a very high level of similarity and are close to other parasites populations from West Africa.


2021 ◽  
Author(s):  
Silvânia da Veiga Leal ◽  
Daniel Ward ◽  
Susana Campino ◽  
Ernest Diez Benavente ◽  
Amy Ibrahim ◽  
...  

Abstract Background Cape Verde is an archipelago located off the West African coast, and is in a pre-elimination phase of malaria control. Since 2010, less than 20 Plasmodium falciparum malaria cases have been reported annually, except in 2017, when an outbreak in Praia before the rainy season led to 423 autochthonous cases. It is important to understand the genetic diversity of circulating P. falciparum to inform on drug resistance, potential transmission networks, and sources of infection, including parasite importation.Methods Enrolled subjects involved malaria patients admitted to Dr. Agostinho Neto Hospital at Praia city, Santiago island, Cape Verde, between July and October 2017. Neighbours and family members of enrolled cases were assessed for the presence of anti-P. falciparum antibodies. Sanger sequencing and real time PCR was used to identify SNPs in genes associated with drug resistance (e.g. pfdhfr, pfdhps, pfmdr1, pfk13, pfcrt), and whole genome sequencing data was generated to investigate the population structure of P. falciparum parasites.Results We analysed 190 parasite samples, 187 indigenous and three from imported infections. Malaria cases were distributed throughout Praia city. There were no cases of severe malaria, and all patients had an adequate clinical and parasitological response after treatment. Anti-P. falciparum antibodies were not detected in the 137 neighbours and family members tested. No mutations were detected in pfdhps. The triple mutation S108N/N51I/C59R in pfdhfr and the chloroquine resistant CVIET haplotype in the pfcrt gene were detected in almost all samples. Variations in pfk13 were identified in only one sample (R645T, E668K). The haplotype NFD for pfmdr1 was detected in the majority of samples (89.7%).Conclusions Polymorphisms in pfk13 associated with ACTs tolerance in Southeast Asia were not detected, but the majority of the tested samples carried the pfmdr1 haplotype NFD and antimalarial associated mutations in the the pfcrt and pfdhfr genes. We performed the first WGS for Cape Verdean parasites that showed that the samples cluster together, have a very high level of similarity and are close to other parasites populations from West Africa.


Genetics ◽  
2021 ◽  
Author(s):  
Shunhua Han ◽  
Preston J Basting ◽  
Guilherme B Dias ◽  
Arthur Luhur ◽  
Andrew C Zelhof ◽  
...  

Abstract Cell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabelling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of LTR retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome sequencing data (called ngs_te_mapper2), which revealed loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Caroline N. Barquilha ◽  
Nilton J. Santos ◽  
Caio C. D. Monção ◽  
Isabela C. Barbosa ◽  
Flávio O. Lima ◽  
...  

The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.


2020 ◽  
Vol 21 (13) ◽  
pp. 4702
Author(s):  
Chia-Chun Tseng ◽  
Man Chun Wong ◽  
Wei-Ting Liao ◽  
Chung-Jen Chen ◽  
Su-Chen Lee ◽  
...  

Current knowledge of gout centers on hyperuricemia. Relatively little is known regarding the pathogenesis of gouty inflammation. To investigate the epigenetic background of gouty inflammation independent of hyperuricemia and its relationship to genetics, 69 gout patients and 1455 non-gout controls were included. Promoter-wide methylation was profiled with EPIC array. Whole-genome sequencing data were included for genetic and methylation quantitative trait loci (meQTL) analyses and causal inference tests. Identified loci were subjected to co-methylation analysis and functional localization with DNase hypersensitivity and histone marks analysis. An expression database was queried to clarify biologic functions of identified loci. A transcription factor dataset was integrated to identify transcription factors coordinating respective expression. In total, seven CpG loci involved in interleukin-1β production survived genetic/meQTL analyses, or causal inference tests. None had a significant relationship with various metabolic traits. Additional analysis suggested gouty inflammation, instead of hyperuricemia, provides the link between these CpG sites and gout. Six (PGGT1B, INSIG1, ANGPTL2, JNK1, UBAP1, and RAPTOR) were novel genes in the field of gout. One (CNTN5) was previously associated with gouty inflammation. Transcription factor mapping identified several potential transcription factors implicated in the link between differential methylation, interleukin-1β production, and gouty inflammation. In conclusion, this study revealed several novel genes specific to gouty inflammation and provided enhanced insight into the biological basis of gouty inflammation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Tina Huang ◽  
Juan Wang ◽  
Ye Hu ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
...  

Abstract INTRODUCTION Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are highly morbid brain tumors. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding Histone H3. To investigate whether the H3K27M mutant protein is associated with distinct chromatin structure affecting transcription regulation, we generated the first high-resolution Hi-C and ATAC-Seq maps of pHGG cell lines, and integrated these with tissue and cell genomic data. METHODS We generated sequencing data from patient-derived cell lines (DIPG n=6, GBM n=3, normal n=2) and frozen tissue specimens (DIPG n=1, normal brainstem n=1). Analyses included cell line RNA-Seq, ChIP-Seq (H3K27ac, H3K27me3, H3K27M) and genome-wide chromatin conformation capture (Hi-C), as well as tissue ATAC-Seq. Publicly available pediatric glioma tissue ChIP-Seq data was integrated with cell data. CRISPR knock-down of target enhancer regions was performed. RESULTS We identified tumor-specific enhancers and regulatory networks for known oncogenes in DIPG and GBM. In DIPG, FOX, SOX, STAT and SMAD families were among top H3K27Ac enriched motifs. Significant differences in Topologically Associating Domains (TADs) and DNA looping were observed at OLIG2 and MYCN in H3K27M mutant DIPG, relative to wild-type GBM and normal cells. Pharmacologic treatment targeting H3K27Ac (BET and Bromodomain inhibition) altered these 3D structures. Functional analysis of differentially enriched enhancers in DIPG implicated SOX2, SUZ12, and TRIM24 as top activated upstream regulators. Distinct genomic structural variations leading to enhancer hijacking and gene co-amplification were identified at A2M, JAG2, and FLRT1. CONCLUSION We show genome structural variations enhancer-promoter interactions that impact gene expression in pHGG in the presence and absence of the H3K27M mutation. Our results imply that tridimensional genome alterations may play a critical role in the pHGG epigenetic landscape and thereby contribute to pediatric gliomagenesis. Further studies examining the impact of the alterations is therefore underway.


Sign in / Sign up

Export Citation Format

Share Document