DDRE-03. THERAPEUTIC TARGETING OF THE ERK AND CDK PATHWAYS IN PRECLINICAL MODELS OF BRAIN METASTASES

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi74-vi75
Author(s):  
Mohini Singh ◽  
Naema Nayyar ◽  
Ashish Dahal ◽  
Priscilla Brastianos

Abstract Brain metastases (BM) are the most common neoplasm to affect the adult central nervous system. BM develop in 40-50% of advanced lung adenocarcinoma (LUAD), but the lack of durable response to chemotherapy, immunotherapy, or targeted therapy results in death within a year of BM diagnosis. Several advances have been made in identifying genetic drivers of primary cancers. The cell cycle, RAS and ERK pathways have all been implicated in as critical oncogenic regulators, with aberrations linked to driving the progression and metastasis of LUAD. Abemaciclib is a targeted CDK4/6 inhibitor, and LY3214996 is selective ERK1/2 inhibitor, and have shown efficacy in preclinical tumor models as well as in clinical trials. Furthermore, both therapeutics can interfere with the cell cycle, abemaciclib through targeting CDK4/6 and LY3214996 through cyclinD1. Here we present data assessing abemaciclib and LY3214996, as single and combined agents, in cell lines across different KRAS and CDKN2A mutational backgrounds. Seven days post-intracranial inoculation of NSCLC and NSCLC-BM line, mice received either abemaciclib, LY3214996, or a combination P.O. daily for 21 days, and were monitored pre- and post-treatment for tumor growth with bioluminescent imaging. In vitro we demonstrated a dose-dependent reduction in cell growth with each treatment, as well as cell arrest in G1 phase. In vivo, whereas cell lines with a combined KRAS mutation and CDKN2A mutation/deletion had no significant reduction in BM growth, cell lines with a CDKN2A del or BRAF mutation had significant BM reduction, with single agents and combined treatment. Further research is necessary to elucidate under what genetic contexts abemaciclib, LY3214996 or the combination are most effective. Nonetheless, this work highlights that abemaciclib and LY3214996 should be further explored for CDKN2A or BRAF mutant BM.

2019 ◽  
Vol 18 (9) ◽  
pp. 1323-1329 ◽  
Author(s):  
Gabriela Molinari Roberto ◽  
Helder Henrique Paiva ◽  
Lucas Eduardo Botelho de Souza ◽  
Julia Alejandra Pezuk ◽  
Gabriela Maciel Vieira ◽  
...  

Background and Purpose: Glioblastoma (GBM) is the most aggressive brain tumor. Even with the advent of temozolomide, patient survival remains poor, with expected median survival around 1 year from diagnosis. Consequently, the relentless search for new therapeutic strategies able to increase patient outcome persists. 3-[(dodecylthiocarbonyl) methyl] glutarimide (DTCM-g) is a new anti-inflammatory compound that already showed antitumor effects. Materials and Methods: Clonogenic survival, proliferation, apoptosis, cell cycle progression and invasion capacity of pediatric and adult GBM cell lines (U87MG, U251MG, SF188 and KNS-42) were evaluated under treatment with DTCM-g. The combined treatment with radiation was also evaluated in vitro and in vivo through xerographic models. Results: DTCM-g is able to impair proliferation, reduce clonogenic capacity and induce cell cycle arrest in GBM cell lines. No alteration in apoptosis rates was found after treatment. DTCM-g also reduces the invasion capacity of all GBM cell lines without alterations in MMP2 and uPa expression. Moreover, the drug radiosensitized GBM in vitro and in vivo. Conclusion: Although additional studies are still necessary to support our findings, our results suggest that DTCM-g may be a promising drug on the adjuvant treatment of GBM exhibiting antitumor effects, especially through radiosensitization.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii61-ii61
Author(s):  
Mohini Singh ◽  
Naema Nayyar ◽  
Priscilla Brastianos

Abstract Brain metastases (BM) are the most common neoplasm to affect the adult central nervous system, occurring ten times more frequently than primary brain tumors. BM develop in 40–50% of advanced lung adenocarcinoma (LUAD), but the lack of durable response to chemotherapy, immunotherapy, or targeted therapy results in death within a year of BM diagnosis. Several advances have been made in identifying genetic drivers of primary cancers. For instance, the ERK pathway is critical in oncogenesis, with aberrations linked to driving the progression and metastasis of LUAD. Unfortunately, BM remain poorly understood due to both the difficulty of obtaining a sizable collection of metastatic tissue samples as well as a lack of clinically relevant models. Typical models of BM utilize inoculation routes that are invasive and cannot fully recapitulate the entirety of the metastatic cascade. Here we present a novel murine model of BM through an intrathoracic inoculation method that recapitulates the development of primary lung tumors and brain metastases as seen in patients. Using this method, we evaluated the efficacy of LY3214996, an ERK inhibitor, in targeting BM. Seven days post-inoculation of a patient-derived NSCLC-BM line, mice received LY3214996 P.O. daily for 21 days, and were monitored weekly for metastases with bioluminescent imaging. Upon endpoint lungs and brains were also removed and imaged. In vitro we demonstrated a reduction in cell growth and invasion across multiple cell lines of varying KRAS status (NSCLC and NSCLC-BM) treated with LY3214996. In vivo, we saw a reduction in both lung tumor weight as well as frequency of BM. Further research is necessary to elucidate the dosing and efficacy of LY3214996 in our models in different genetic contexts. Nonetheless, our technique presents a novel preclinical tool to interrogate the metastatic process, allowing validation of genetic drivers as well as therapeutic screening.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1878 ◽  
Author(s):  
Sami Znati ◽  
Rebecca Carter ◽  
Marcos Vasquez ◽  
Adam Westhorpe ◽  
Hassan Shahbakhti ◽  
...  

Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models. Methods: Vandetanib and radiation treatment were combined in HCC cell lines grown in vitro and in vivo. In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC. Results: Vandetanib IC 50 s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion in vitro. In vivo, combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment. Conclusion: In 2D and 3D studies in vitro and in a syngeneic model in vivo, the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi267-vi268
Author(s):  
Mohini Singh ◽  
Naema Nayyar ◽  
Megha Subramanian ◽  
Priscilla Brastianos

Abstract Brain metastases (BM) are the most common neoplasm to affect the adult central nervous system, occurring ten times more frequently than primary brain tumor. BM develop in 40–50% of advanced lung adenocarcinoma (LUAD), and the lack of durable response to chemotherapy, immunotherapy, or targeted therapy will result in death within a year of BM diagnosis. Despite the high burden of disease, dismal prognosis, and the increase in incidence over time, the biological underpinnings of BM remain poorly understood due to both the difficulty of obtaining a sizable collection of metastatic tissue samples as well as a lack of clinically relevant models. As such, it is possible that the inability to properly study this disease may result in metastasis driver-genes remaining undiscovered. Typical models of BM utilize direct implantation of tumor cells into the mouse brain, or inoculation into the blood via intracardiac/intracarotid injections; these routes are invasive and cannot fully recapitulate the entirety of the metastatic cascade. Here we present a novel, non-invasive method to develop primary lung tumors and brain metastases. A 10µL tumor cell suspension in phosphate-buffered saline was applied to the nostrils of lightly anesthetized mice, allowing direct deposit of cells into the lungs. Mice were monitored with bioluminescence imaging bi-weekly and culled at 2.5–3 months post-inoculation. Lungs and brains were also removed and imaged, where tumors in both organs were observed. Further research is necessary to elucidate either the linear or parallel progression of tumor formation within this model. Nonetheless, our technique presents a novel preclinical tool to interrogate the metastatic process, allowing validation of genetic drivers as well as therapeutic screening.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4333-4333
Author(s):  
Jun-ichi Kitagawa ◽  
Takeshi Hara ◽  
Hisashi Tsurumi ◽  
Nobuhiro Kanemura ◽  
Masahito Shimizu ◽  
...  

Abstract Introduction: We have recently reported that the effectiveness of low dose Ara-C, VP-16 and G-CSF (AVG therapy) for elderly AML patients who were ineligible for intensive chemotherapy (Hematol Oncol, in press). G-CSF has been reported to potentiate in vitro anti-leukemic effect of Ara-C. The mechanism of the potentiation is assumed to recruit quiescent G0 leukemic cells into cell cycle. We hypothesized that the enhanced cytotoxicity was due to the apoptosis by the effect of the priming of G-CSF, and the effect was depended on the cell cycle. In order to afford proof of this hypothesis, we assayed proliferation, apoptosis, and cell cycle in leukemic cell lines. Materials: Ara-C, VP-16, G-CSF was provided by Nippon Shinyaku, Nihonkayaku, Chugai pharmacy, respectively, Tokyo, Japan. 32D and HL-60 were obtained from RIKEN Bioresource Center Cell Bank (Ibaragi, Japan), Ba/F3 was generous gifts from Dr. Kume, Jichi medical school, Tochigi, Japan. Methods: 5 x 105/ml HL60, 32D and Ba/F3 were cultured with various concentrations of Ara-C and/or VP-16 in the presence or absence of G-CSF 50ng/ml for 3 days. At the end of the culture, cell proliferation and viability were determined by using the trypan blue. The Annexin V-binding capacity of treated cells was examined by flow cytometry using ANNEXIN V-FITC APOPTOSIS DETECTION KIT I purchased from BD Pharmingen™. Cell cycle analysis was done with BrdU Flow KIT purchased from BD Pharmingen™. The incorporated BrdU was stained with specific anti-BrdU fluorescent antibodies, and the levels of cell-associated BrdU are then measured by flow cytometory. Result: Ara-C and VP-16 inhibited proliferation and decreased viability of leukemic cell lines dose-dependently. Half killing concentration (IC50) was redused in combination of Ara-C and VP-16 than Ara-C or VP-16 alone. In G-CSF dependent cell line (32D), IC50 was redeced in the presence of G-CSF than absence of G-CSF at G-CSF, and there was no significant difference between with and without G-CSF in G-CSF independent cell lines (HL-60, Ba/F3) (p<0.05). In combined treatment of low dose Ara-C (10−7M) and VP-16 (10−7M), the percentage of apoptotic cells were increased to 20.67% from 13.04% by addition of G-CSF in 32D, and there was no significant differencebetween with and without G-CSF in HL-60 and Ba/F3 (p<0.05). At combined treatment of low dose Ara-C and VP-16, the percentage of G0/G1 phase cells were decreased to 43.94% from 35.63% and S phase cells were increased to 29.50% from 24.05% in 32D by addition of G-CSF, and there was no significant difference between with and without G-CSF in HL-60 and Ba/F3 (p<0.05). Discussion: We first showed a combination effect of Ara-C and VP-16. Next we demonstrated that the potentiation of the cytotoxicity was mediated through the mechanism of apoptosis, and apoptosis played an important role for eradicating leukemic cells by low dose Ara-C and VP-16. And G-CSF recruited cells G0/G1 phase into S phase in G-CSF dependent cells by addition of G-CSF. These results suggest that priming effect of G-CSF significantly potentiate the cytotoxicity mediated by AVG chemotherapy. Conclusion: The priming effect of G-CSF might be admitted at least of a part in AML cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1653-1653
Author(s):  
Silvia Locatelli ◽  
Arianna Giacomini ◽  
Anna Guidetti ◽  
Loredana Cleris ◽  
Michele Magni ◽  
...  

Abstract Abstract 1653 Introduction: A significant proportion of Hodgkin lymphoma (HL) patients refractory to first-line chemotherapy or relapsing after autologous transplantation are not cured with currently available treatments and require new treatments. The PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in the majority of HL. These pathways can be targeted using the AKT inhibitor perifosine (Æterna Zentaris GmBH, Germany, EU), and the RAF/MEK/ERK inhibitor sorafenib (Nexavar®, Bayer, Germany, EU). We hypothesized that perifosine in combination with sorafenib might have a therapeutic activity in HL by overcoming the cytoprotective and anti-apoptotic effects of PI3K/Akt and RAF/MEK/ERK pathways. Since preclinical evidence supporting the anti-lymphoma effects of the perifosine/sorafenib combination are still lacking, the present study aimed at investigating in vitro and in vivo the activity and mechanism(s) of action of this two-drug combination. METHODS: Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P ≤.0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of apoptosis. In responsive cell lines, WB analysis showed that anti-proliferative events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P ≤.0001) as well as mice receiving perifosine alone (49 days, P ≤.03) or sorafenib alone (54 days, P ≤.007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P ≤.0001) and necrosis (2- to 8-fold, P ≤.0001), as compared to controls or treatment with single agents. CONCLUSIONS: Perifosine/sorafenib combination resulted in potent anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation in HL patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3168-3168
Author(s):  
Anamika Dhyani ◽  
João Agostinho Machado-Neto ◽  
Patricia Favaro ◽  
Sara Teresinha Olalla Saad

Abstract Introduction ANKHD1 is a multiple ankyrin repeats containing protein, highly expressed in cancers, such as acute leukemia. Earlier studies showed that ANKHD1 is highly expressed and plays important role in proliferation and cell cycle progression of multiple myeloma (MM) cells. It was also observed that ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irresepective of TP53 mutational status of MM cell lines. Objective The present study aimed to study the effect ofANKHD1 silencing on MM growth both in vitro (clonogenicity, migration) and in vivo (xenograft tumor mice model). The purpose was to investigate the feasibility of ANKHD1 gene therapy for MM. Methods In the present study, ANKHD1 expression was silenced using short hairpin RNA (shRNA)-lentiviral delivery vector in MM cell lines (U266 and MM1S). For control MM cells were tranduced by lentiviral shRNA against LacZ. Downregulation of ANKHD1 expression was confirmed by qPCR and Western blot. Colony formation capacity and migration of control and ANKHD1 silenced MM cells was determined by methylcellulose and transwell migration assays, respectively. For in vivo MM growth, NOD-SCID mice were divided in two groups injected with control and ANKHD1 silenced cells, separately. Mice were observed daily for tumor growth. Once the tumor size reached 1 mm3, mice in both groups were sacrificed and tumor was excised to measure tumor volume and weight. Results Corroborating the results obtained in our earlier studies, in the present study also inhibition of ANKHD1 expression suppressed growth of MM cells in vitro. MM cell lines tranduced with ANKHD1 shRNA showed significantly low number of colonies ten days after plating in methylcellulose medium as compared to control (p<0.05). Similarly, in transwell migration assay, cell lines transduced with ANKHD1 showed significantly less migration as in response to 10% FBS at lower chamber as compared to control group (p<0.05) in both the cell lines analyzed. Further in xenograft MM mice model, the growth of tumor was visibly suppressed in mice injected with ANKHD1 silenced cells compared to control group. There was significant difference in tumor size (volume) between these 2 groups (P< 0.006). The tumor weight of the inhibition group was 0.71 ±0.2 g, significantly lighter than those of the control group (1.211 ± 0.5 g, P =0.02) Conclusion Our data indicates ANKHD1 downregulation significantly inhibits colony-forming ability and migration of both glucocorticoid resistant (U266) and sensitive (MM1S) MM cells. Further, gene silencing of ANKHD1 also resulted in reduced in vivo tumor growth in NOD/SCID mice. Collectively, the result obtained indicates that ANKHD1 may be a target for gene therapy in MM. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document