scholarly journals Patient-derived cells from recurrent tumors that model the evolution of IDH-mutant glioma

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Lindsey E Jones ◽  
Stephanie Hilz ◽  
Matthew R Grimmer ◽  
Tali Mazor ◽  
Chloé Najac ◽  
...  

Abstract Background IDH-mutant lower-grade gliomas (LGGs) evolve under the selective pressure of therapy, but well-characterized patient-derived cells (PDCs) modeling evolutionary stages are lacking. IDH-mutant LGGs may develop therapeutic resistance associated with chemotherapy-driven hypermutation and malignant progression. The aim of this study was to establish and characterize PDCs, single-cell-derived PDCs (scPDCs), and xenografts (PDX) of IDH1-mutant recurrences representing distinct stages of tumor evolution. Methods We derived and validated cell cultures from IDH1-mutant recurrences of astrocytoma and oligodendroglioma. We used exome sequencing and phylogenetic reconstruction to examine the evolutionary stage represented by PDCs, scPDCs, and PDX relative to corresponding spatiotemporal tumor tissue and germline DNA. PDCs were also characterized for growth and tumor immortality phenotypes, and PDX were examined histologically. Results The integrated astrocytoma phylogeny revealed 2 independent founder clonal expansions of hypermutated (HM) cells in tumor tissue that are faithfully represented by independent PDCs. The oligodendroglioma phylogeny showed more than 4000 temozolomide-associated mutations shared among tumor samples, PDCs, scPDCs, and PDX, suggesting a shared monoclonal origin. The PDCs from both subtypes exhibited hallmarks of tumorigenesis, retention of subtype-defining genomic features, production of 2-hydroxyglutarate, and subtype-specific telomere maintenance mechanisms that confer tumor cell immortality. The oligodendroglioma PDCs formed infiltrative intracranial tumors with characteristic histology. Conclusions These PDCs, scPDCs, and PDX are unique and versatile community resources that model the heterogeneous clonal origins and functions of recurrent IDH1-mutant LGGs. The integrated phylogenies advance our knowledge of the complex evolution and immense mutational load of IDH1-mutant HM glioma.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yue Xing ◽  
Xiaoxi Kang ◽  
Siwei Zhang ◽  
Yujie Men

AbstractTo explore how co-occurring non-antibiotic environmental stressors affect evolutionary trajectories toward antibiotic resistance, we exposed susceptible Escherichia coli K-12 populations to environmentally relevant levels of pesticides and streptomycin for 500 generations. The coexposure substantially changed the phenotypic, genotypic, and fitness evolutionary trajectories, resulting in much stronger streptomycin resistance (>15-fold increase) of the populations. Antibiotic target modification mutations in rpsL and rsmG, which emerged and dominated at late stages of evolution, conferred the strong resistance even with less than 1% abundance, while the off-target mutations in nuoG, nuoL, glnE, and yaiW dominated at early stages only led to mild resistance (2.5–6-fold increase). Moreover, the strongly resistant mutants exhibited lower fitness costs even without the selective pressure and had lower minimal selection concentrations than the mildly resistant ones. Removal of the selective pressure did not reverse the strong resistance of coexposed populations at a later evolutionary stage. The findings suggest higher risks of the selection and propagation of strong antibiotic resistance in environments potentially impacted by antibiotics and pesticides.


2020 ◽  
Author(s):  
Mengqiu Xiong ◽  
Ping Wang ◽  
Bei Pan ◽  
Junjie Nie ◽  
Shukui Wang ◽  
...  

MicroRNA-196a (miR-196a) was previously reported to be upregulated in cancers, and it has the diagnostic and prognostic values in cancers. Whereas, the conclusion was still unclear according to the published data. To assess such roles of miR-196a in cancers, this study was conducted based on published data and online cancer related databases. To identify the relevant published data, we searched articles in databases and then the relevant data was extracted to evaluate the correlation between miR-196a expression and diagnosis, prognosis for cancer patients. The pooled results showed that miR-196a was a valuable diagnostic biomarker in cancer (AUC=0.87, 95%CI: 0.84-0.90; sensitivity=0.73, 95%CI:0.64-0.81; specificity=0.90, 95%CI:0.81-0.95), which was consistent with the data from databases (breast cancer: miR-196a-3p: AUC=0.77, 95%CI: 0.74-0.79; miR-196a-5p: AUC=0.71, 95%CI: 0.66-0.75; pancreatic cancer: miR-196a-3p: AUC=0.80, 95%CI: 0.73-0.87; miR-196a-5p: AUC=0.61, 95%CI:0.51-0.71). In addition, the pooled result revealed that elevated miR-196a expression in tissues (HR=2.54, 95%CI: 1.79-3.61, PHeterogeneity =0.000, I2=75.8%) or serum/plasma (HR=4.06, 95%CI: 2.67-6.18, PHeterogeneity =0.668, I2=0%) was an unfavorable survival biomarker, which was consistent with the data from databases (adrenocortical carcinoma: HR=5.70; esophageal carcinoma: HR=1.93; brain lower grade glioma: HR=2.91; GSE40267: HR=2.47, 95%CI: 1.2-5.07; TCGA: HR=1.82, 95%CI: 1.21-2.74; GSE19783: HR=4.24, 95%CI:1-18.06). In short, our results demonstrated that miR-196a in tumor tissue or serum/plasma could be used as a prognostic and diagnostic values for cancers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dido Carrero ◽  
José G. Pérez-Silva ◽  
Víctor Quesada ◽  
Carlos López-Otín

Abstract Tardigrades, also known as water bears, are small aquatic animals that inhabit marine, fresh water or limno-terrestrial environments. While all tardigrades require surrounding water to grow and reproduce, species living in limno-terrestrial environments (e.g. Ramazzottius varieornatus) are able to undergo almost complete dehydration by entering an arrested state known as anhydrobiosis, which allows them to tolerate ionic radiation, extreme temperatures and intense pressure. Previous studies based on comparison of the genomes of R. varieornatus and Hypsibius dujardini - a less tolerant tardigrade - have pointed to potential mechanisms that may partially contribute to their remarkable ability to resist extreme physical conditions. In this work, we have further annotated the genomes of both tardigrades using a guided approach in search for novel mechanisms underlying the extremotolerance of R. varieornatus. We have found specific amplifications of several genes, including MRE11 and XPC, and numerous missense variants exclusive of R. varieornatus in CHEK1, POLK, UNG and TERT, all of them involved in important pathways for DNA repair and telomere maintenance. Taken collectively, these results point to genomic features that may contribute to the enhanced ability to resist extreme environmental conditions shown by R. varieornatus.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15769-e15769
Author(s):  
Thomas Seufferlein ◽  
Andreas W. Berger ◽  
Daniel Schwerdel ◽  
Thomas Jens Ettrich ◽  
Stefan A. Schmidt ◽  
...  

e15769 Background: Treatment of stage IV pancreatic ductal adenocarcinoma (PDAC) has made substantial progress over the last years, therapy monitoring still is at an early stage. This could be substantially supported by tools that allow to establish and monitor the molecular setup of the tumor even during treatment. In particular, non-invasive approaches are desirable. Characterization of circulating tumor DNA (ctDNA) may help to achieve this goal. Methods: We analyzed a cohort of 20 patients with histologically confirmed metastatic PDAC (mPDAC) prior to and during palliative treatment including disease progression. ctDNA and corresponding tumor tissue were analyzed by targeted NGS and droplet digital PCR for the 7 most frequently mutated genes in PDAC ( TP53, SMAD4, CDKN2A, KRAS, APC, ATM, FBXW7). Findings were correlated with clinical and imaging data to establish its prognostic and predictive value. Results: ctDNA was analyzed at baseline prior to initiation of the respective line of treatment. Mutations in either of the genes examined were detectable in 15/20 patients (75%). Tissue-blood concordance was 80% in therapy naïve patients. 96% of mutations in ctDNA of therapy naïve patients were in KRAS and/or TP53. The combined mutated allele frequencies (CMAF) of theese 2 genes significantly decreased (p = 0.0173) during therapy and increased at progression (p = 0.0145) across all treatment lines. By sequential ctDNA analyses we detected a change in the mutational landscape compared to the respective baseline ctDNA status in 7/11 patients during 1st line, in 3/7 patients during 2nd line and 2/2 patients during 3rdline treatment. In therapy naïve patients, the decline of the CMAF during therapy significantly correlated with progression-free survival (p = 0.0013). Conclusions: Molecular genotyping of ctDNA in mPDAC patients proved to be feasible and there was a high concordance between tumor tissue and ctDNA. The molecular genotype changed significantly during treatment and changes correlated with outcome. Monitoring of ctDNA may enable to adapt therapeutic strategies to the specific molecular changes present at a certain time during treatment of mPDAC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 284-284
Author(s):  
Dan-Avi Landau ◽  
Petar Stojanov ◽  
Michael S Lawrence ◽  
Carrie Sougnez ◽  
Aaron McKeena ◽  
...  

Abstract Abstract 284 Tumor evolution is a complex process, and is the biologic underpinning of disease progression, resistance to therapy and relapse. Using whole-exome sequencing (WES) of sequential samples from patients with relapsed chronic lymphocytic leukemia (CLL) treated with conventional chemotherapy, we studied genetic tumor evolution of cancer relapse. We performed WES using paired-end reads on DNA from two peripheral blood-derived CLL tumor samples at least one year apart and on germline DNA for 20 patients. Here we report the analysis of tumor exomes from the first seven patients, of whom 6 had relapsed disease after chemotherapy and one untreated patient without intervening therapy between samples. All samples had a tumor purity that exceeded 90%. Sequencing coverage was >86% of target territory, with 132x depth obtained for all samples. In total, 187 coding region mutations (124 nonsynonymous, 63 synonymous) were identified (median: 21 somatic mutations/patient; range: 10–64), not including Ig gene mutations which were >80% clonal and remained clonally stable in our cohort. We measured the abundance of specific mutations in each patient tumor to assess clonality. An allelic frequency of 0.3–0.6 likely represents heterozygous mutations in most or all tumor cells (‘clonal') while a frequency of <0.3 represents mutations in a subset of tumor cells (‘subclonal'). Overall, 118 (63%) somatic mutations were clonal, and their allelic frequency remained unchanged in the relapse samples. 65 (35%) mutations were subclonal (average allelic frequency 0.13±0.075). Ten subclonal mutations, found in 3 of 7 initial samples, evolved into clonal mutations in the relapse samples, compared with only a single opposite occurrence where a clonal mutation became subclonal (p< 0.005, FDR q<0.01). The remaining 4 of 7 tumors showed only minor shifts in allelic frequencies over time, and included the individual who did not receive chemotherapy between samples. In Patient A, a subclone with three mutations appeared to expand to become the dominant clone, with a change in allelic fraction from an average of 0.17 (0.14–0.23) to an average of 0.43 (0.41–0.46) (p<0.000001). Two of three mutations were non-silent and are likely cancer drivers: NRAS (Q61R, found in 38/38 samples in COSMIC- Catalogue of Somatic Mutations in Cancer, Sanger Institute), and a cancer related gene PLK1. The third mutation is likely a passenger mutation as it was a synonymous mutation in ADAM18. In Patient B, a subclone containing a novel, recently identified driver in CLL, SF3B1, became the dominant clone that included additional mutations in cancer-related genes, CSMD1 and KIAA1199 (change in allelic fraction from an average of 0.16 (0.12–0.18) to an average of 0.37 (0.35–0.38) (p<0.001)). In another example, Patient C, a TP53 mutation increased in allelic frequency from 0.18 in the initial sample to 0.69 in the relapse sample (p<0.005). Analysis of copy number variation (CNV) by CapSeg (a novel algorithm that examines CNV from WES) revealed this change in allelic frequency to be coupled with a ploidy change in del(17p) from 0.8 to 0.5, consistent with a loss of both alleles. Only one sample demonstrated the appearance of novel mutations with relapse (Patient C), with 19 new mutations (13 non-silent, 3 Silent) of a total of 46 appearing at relapse. All however were subclonal, and thus less likely to have driven tumor relapse. A comparison of the 10 mutations that were selected by chemotherapy to all other mutations demonstrated an enrichment in mutations seen in the COSMIC database (p<0.05), which hints at a higher proportion of cancer drivers in this set. Our ongoing analyses are focused on the association of clinical features with copy number variation and changes in gene expression. In summary, our analysis of serial exomes from seven patients provided important insights into the genetic evolution of CLL under the selective pressure of chemotherapy. We demonstrate a significant change in clonal dynamics in one half of treated patients, which suggests that relapsed disease following treatment is driven by expansion of subclones under the selective pressure of chemotherapy rather than by novel mutagenesis. This observation may have clinical implications, as it suggests that pre-treatment WES may allow not only for the delineation of current genetic abnormalities, but through investigation of subclonal mutations, may also predict genetic evolution in future relapse. Disclosures: No relevant conflicts of interest to declare.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Yang ◽  
Xiao Zhao ◽  
Chong Wan ◽  
Xin Ma ◽  
Shaoxi Niu ◽  
...  

Abstract Backgrounds Urothelial carcinoma (UC) is the most common genitourinary malignancy in China. In this study, we surveyed the genomic features in Chinese UC patients and investigated the concordance of genetic alterations between circulating tumor DNA (ctDNA) in plasma and matched tumor tissue. Materials and methods A total of 112 UC patients were enrolled, of which 31 were upper tract UC (UTUC) and 81 were UC of bladder (UCB). Genomic alterations in 92 selected genes were analyzed by targeted next-generation sequencing. Results In the study cohort, 94.64, 86.61 and 62.50% of patients were identified as having valid somatic, oncogenic and actionable somatic alterations, respectively. The most frequently altered genes included TP53, KMT2D, KDM6A, FAT4, FAT1, CREBBP and ARID1A. The higher prevalence of HRAS (22.0% vs 3.7%) and KMT2D (59.26% vs 34.57%) was identified in UTUC than in UCB. Comparisons of somatic alterations of UCB and UTUC between the study cohort and western cohorts revealed significant differences in mutant prevalence. Notably, 28.57, 17.86 and 47.32% of the cases harbored alterations in FGFRs, ERBBs and DNA damage repair genes, respectively. Furthermore, 75% of the patients carried non-benign germline variants, but only two (1.79%) were pathogenic. The overall concordance for genomic alterations in ctDNA and matched tumor tissue was 42.97% (0–100%). Notably, 47.25% of alterations detected in ctDNA were not detected in the matched tissue, and 54.14% of which were oncogenic mutations. Conclusions We found a unique genomic feature of Chinese UC patients. A reasonably good concordance of genomic features between ctDNA and tissue samples were identified.


2014 ◽  
Author(s):  
Cody Hinchliff ◽  
Stephen A Smith ◽  
James F Allman ◽  
J Gordon Burleigh ◽  
Ruchi Chaudhary ◽  
...  

Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips -- the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: 1) a novel comprehensive global reference taxonomy; and 2) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. While data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.


2018 ◽  
Author(s):  
Manuel Lafond ◽  
Mona Meghdari Miardan ◽  
David Sankoff

AbstractMotivationWhen gene duplication occurs, one of the copies may become free of selective pressure and evolve at an accelerated pace. This has important consequences on the prediction of orthology relationships, since two orthologous genes separated by divergence after duplication may differ in both sequence and function. In this work, we make the distinction between the primary orthologs, which have not been affected by accelerated mutation rates on their evolutionary path, and the secondary orthologs, which have. Similarity-based prediction methods will tend to miss secondary orthologs, whereas phylogeny-based methods cannot separate primary and secondary orthologs. However, both types of orthology have applications in important areas such as gene function prediction and phylogenetic reconstruction, motivating the need for methods that can distinguish the two types.ResultsWe formalize the notion of divergence after duplication, and provide a theoretical basis for the inference of primary and secondary orthologs. We then put these ideas to practice with the HyPPO (Hybrid Prediction of Paralogs and Orthologs) framework, which combines ideas from both similarity and phylogeny approaches. We apply our method to simulated and empirical datasets, and show that we achieve superior accuracy in predicting primary orthologs, secondary orthologs and paralogs.AvailabilityHyPPO is a modular framework with a core developed in Python, and is provided with a variety of C++ modules. The source code is available at https://github.com/manuellafond/[email protected], [email protected], [email protected]


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1806
Author(s):  
Johanna Gesperger ◽  
Antonia Lichtenegger ◽  
Thomas Roetzer ◽  
Matthias Salas ◽  
Pablo Eugui ◽  
...  

Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. OCM provides high-resolution information of the inherent tissue scattering and absorption properties of tissue. We here explore quantitative attenuation coefficients derived from volumetric OCM intensity data and quantitative high-resolution 5-ALA fluorescence as potential biomarkers for tissue malignancy including otherwise difficult-to-assess low-grade glioma. We validate our findings against the gold standard histology and use attenuation and fluorescence intensity measures to differentiate between tumor core, infiltrative zone and adjacent brain tissue. Using large field-of-view scans acquired by a near-infrared swept-source optical coherence tomography setup, we provide initial assessments of tumor heterogeneity. Finally, we use cross-sectional OCM images to train a convolutional neural network that discriminates tumor from non-tumor tissue with an accuracy of 97%. Collectively, the present hybrid approach offers potential to translate into an in vivo imaging setup for substantially improved intraoperative guidance of brain tumor surgeries.


Sign in / Sign up

Export Citation Format

Share Document