scholarly journals 693. Shaking Things Up: Direct-to-PCR Viral Detection off Swabs Using Shaker-Mill Homogenization

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S399-S399
Author(s):  
Zachary P Morehouse ◽  
Caleb Proctor ◽  
Gabriella Ryan ◽  
Rodney J Nash

Abstract Background As the number of viral diseases are on the rise, it is critical to continue to innovate and advance diagnostic, treatment, and surveillance methods surrounding viral infections. Currently, one of the most reliable methods for viral infection detection are polymerase chain reaction (PCR) based assays. These assays often involve procedures of swabbing a patient, processing the sample to lyse the virus, extract, and purify it’s nucleotides, and then run the purified genetic material via PCR for detection of a gene product needed to confirm the patient’s suspected diagnosis. This process requires time to complete and is dependent on the availability of the reagents and plastics required to complete the lysis, extraction, purification, and amplification procedures. Herein, we have developed a method to detect virus off a swab using solely shaker-mill based mechanical lysis and the transfer of the viral lysate directly to a PCR based assay, bypassing the reagent heavy and time consuming extraction and purification steps. Methods Using Human Coronavirus 229E (HCoV-229E) as a model system, we spiked swabs with clinically relevant levels of the virus for proof-of-concept testing. Swabs were spiked in serial dilutions from 1.2e7 copies/mL to 1.2e1 copies/mL. The swabs were then placed in 2mL tubes with viral transport media (VTM) to mimic the specimen collection procedures in the clinic prior to processing via shaker-mill homogenization. After homogenization, 1 uL of viral lysate was run in RT-qPCR for amplification of the nucleocapsid (N) gene, qualifying viral detection from the sample. Results HCoV-229E spiked swabs were run through the two-step process of homogenization direct to RT-qPCR for viral detection. After running 54 swabs, we confidently determined our limit of detection to be 1.2e3 viral copies/mL with 96.30% sensitivity in vitro. Conclusion We have successfully proven that shaker-mill homogenization provides sufficient viral lysis off swabs, where the resulting lysate can be used directly in PCR based assays for the detection of virus. This finding allows for decreased run time in traditional PCR based diagnostics and reduces the reagents and plastics required for each sample, ultimately reducing the cost and time of each viral test when compared to traditional PCR based methods. Disclosures Zachary P. Morehouse, MS, OMS-III, Omni International Inc (Consultant) Caleb Proctor, BS, Omni International Inc (Employee) Gabriella Ryan, BS, Omni International Inc (Employee) Rodney J. Nash, PhD, Omni International Inc (Employee)

2020 ◽  
Author(s):  
Zachary P Morehouse ◽  
Caleb M Proctor ◽  
Gabriella L Ryan ◽  
Rodney J Nash

Abstract Background Currently, one of the most reliable methods for viral infection detection are polymerase chain reaction (PCR) based assays. This process is time and resource heavy, requiring multiple steps of lysis, extraction, purification, and amplification procedures. Herein, we have developed a method to detect virus off swabs using solely shaker-mill based mechanical lysis and the transfer of the viral lysate directly to a PCR assay for virus detection, bypassing the substantial reagent and time investments required for extraction and purification steps.Methods Using Human Coronavirus 229E (HCoV-229E) as a model system, we spiked swabs in vitro for proof-of-concept testing. Swabs were spiked in serial dilutions from 1.2x106 to 1.2x101 copies/mL and then placed in 2mL tubes with viral transport media (VTM) to mimic the specimen collection procedures in the clinic prior to processing via shaker-mill homogenization. After homogenization, 1 µL of lysate was processed using RT-qPCR for amplification of the nucleocapsid (N) gene, qualifying viral detection. Results HCoV-229E in vitro spiked swabs were processed in a novel two-step, direct-to-PCR methodology for viral detection. After running 54 swabs, we confidently determined our limit of detection to be 1.2x103 viral copies/mL with 96.30% sensitivity. Conclusion We have proven that the shaker-mill homogenization-based two-step, direct-to-PCR procedures provides sufficient viral lysis off swabs, where the resulting lysate can be used directly in PCR for the detection of HCoV-229E. This finding allows for reductions in the time and resources required for PCR based virus detection in comparison to the traditional extraction-to-PCR methodology.


Author(s):  
Patrycja Sroga ◽  
David Safronetz ◽  
Derek R Stein

With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.


Author(s):  
I. F. Gorlov ◽  
A. A. Mosolov ◽  
G. V. Komlatskiy ◽  
M. A. Nesterenko ◽  
K. D. Nimbona ◽  
...  

The article presents materials on the study of the possibility of reproduction and increase in the herd of highly productive cows through the use of embryo transplantation technology. The classical (in vivo) and more modern, developing (in vitro) methods of embryotransfer, their positive and negative sides are considered in detail. The possibility of accelerating the breeding process by using the method of transplantation, in which from one cow can be obtained from 10 to 100 calves, which will allow for 4-5 years, almost any herd (of any size and breed) with the help of biotechnology to turn into a cattle-breeding enterprise of the most modern level. At the same time, heifers obtained from unproductive cows can be used as "surrogate" mothers who are transplanted with the best donor embryos, which allows to obtain a full-fledged offspring adapted to local environmental conditions. A detailed scheme of obtaining, evaluation, storage, as well as the cost and economic effect of embryo transplantation was calculated, the market was evaluated, the required annual volume of transplants and the number of donor cows for large livestock farms were determined. As a positive example of "Scientific-production enterprise "Centre of biotechnology and embryo transfer" in 2014, implemented a project for accelerated replacement and genetic improvement of the dairy herd, engraftment averaged 57-69%, and the economic effect of the enterprise from getting a single animal by the method of embryo transfer, compared with imports of similar close in quality, ranged from 60 to 100 thousand rubles on his head. It is shown that it is necessary to organize at the state level a developed service for embryo transplantation to reduce the cost of embryo transfer and the possibility of creating in a short time in the country's own highly productive breeding nucleus of dairy and beef cattle, which will reduce, and in the future completely eliminate, import dependence on cattle products.


2015 ◽  
Vol 51 (37) ◽  
pp. 7887-7890 ◽  
Author(s):  
Hideto Maruyama ◽  
Kazuhiro Furukawa ◽  
Hiroyuki Kamiya ◽  
Noriaki Minakawa ◽  
Akira Matsuda

Synthetic chemically modified nucleic acids, which are compatible with DNA/RNA polymerases, have great potential as a genetic material for synthetic biological studies.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 192
Author(s):  
Bakhtiyar Qader ◽  
Issam Hussain ◽  
Mark Baron ◽  
Rebeca Jiménez-Pérez ◽  
Guzmán Gil-Ramírez ◽  
...  

Coumaphos is an organophosphorus compound used as insecticide and frequently used by beekeepers for the management of parasitic mites. The most important metabolite, chlorferron (CFN), has been identified in biological samples and foodstuff. The need to quickly identify the presence of typical metabolites, as an indication of interaction with coumaphos has driven the need to produce a highly sensitive electrochemical method for chlorferron analysis, based on molecularly imprinting polymers (MIP) technology. It showed irreversible behaviour with mixed diffusion/adsorption-controlled reactions at the electrode surface. A monoelectronic mechanism of reaction for oxidation has also been suggested. The linear range observed was from 0.158 to 75 µM. Median precision in terms of %RSD around 3% was also observed. For DPV, the limit of detection (LOD) and the limit of quantitation (LOQ) for the CFN-MIP were 0.158 µM and 0.48 µM, respectively. The obtained median % recovery was around 98%. The results were also validated to reference values obtained using GC-MS. Urine and human synthetic plasma spiked with CFN were used to demonstrate the usability of the method in biological samples, showing the potential for biomonitoring. The developed imprinted sensor showed maximum signal change less than 16.8% when related metabolites or pesticide were added to the mix, suggesting high selectivity of the MIP sensor toward CFN molecules. The results from in vitro metabolism of CMP analysed also demonstrates the potential for detection and quantification of CFN in environmental samples. The newly developed CFN-MIP sensor offers similar LoDs than chromatographic methods with shorter analysis time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Helen Yan ◽  
Sherry X. Chen ◽  
Lauren Y. Cheng ◽  
Alyssa Y. Rodriguez ◽  
Rui Tang ◽  
...  

AbstractWhole exome sequencing (WES) is used to identify mutations in a patient’s tumor DNA that are predictive of tumor behavior, including the likelihood of response or resistance to cancer therapy. WES has a mutation limit of detection (LoD) at variant allele frequencies (VAF) of 5%. Putative mutations called at ≤ 5% VAF are frequently due to sequencing errors, therefore reporting these subclonal mutations incurs risk of significant false positives. Here we performed ~ 1000 × WES on fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue biopsy samples from a non-small cell lung cancer patient, and identified 226 putative mutations at between 0.5 and 5% VAF. Each variant was then tested using NuProbe NGSure, to confirm the original WES calls. NGSure utilizes Blocker Displacement Amplification to first enrich the allelic fraction of the mutation and then uses Sanger sequencing to determine mutation identity. Results showed that 52% of the 226 (117) putative variants were disconfirmed, among which 2% (5) putative variants were found to be misidentified in WES. In the 66 cancer-related variants, the disconfirmed rate was 82% (54/66). This data demonstrates Blocker Displacement Amplification allelic enrichment coupled with Sanger sequencing can be used to confirm putative mutations ≤ 5% VAF. By implementing this method, next-generation sequencing can reliably report low-level variants at a high sensitivity, without the cost of high sequencing depth.


Author(s):  
Ron M Kagan ◽  
Amy A Rogers ◽  
Gwynngelle A Borillo ◽  
Nigel J Clarke ◽  
Elizabeth M Marlowe

Abstract Background The use of a remote specimen collection strategy employing a kit designed for unobserved self-collection for SARS-CoV-2 RT-PCR can decrease the use of PPE and exposure risk. To assess the impact of unobserved specimen self-collection on test performance, we examined results from a SARS-CoV-2 qualitative RT-PCR test for self-collected specimens from participants in a return-to-work screening program and assessed the impact of a pooled testing strategy in this cohort. Methods Self-collected anterior nasal swabs from employee return to work programs were tested using the Quest Diagnostics SARS-CoV-2 RT-PCR EUA. The Ct values for the N1 and N3 N-gene targets and a human RNase P (RP) gene control target were tabulated. For comparison, we utilized Ct values from a cohort of HCP-collected specimens from patients with and without COVID-19 symptoms. Results Among 47,923 participants, 1.8% were positive. RP failed to amplify for 13/115,435 (0.011%) specimens. The median (IQR) Cts were 32.7 (25.0-35.7) for N1 and 31.3 (23.8-34.2) for N3. Median Ct values in the self-collected cohort were significantly higher than those of symptomatic, but not asymptomatic patients. Based on Ct values, pooled testing with 4 specimens would have yielded inconclusive results in 67/1,268 (5.2%) specimens but only a single false-negative result. Conclusions Unobserved self-collection of nasal swabs provides adequate sampling for SARS-CoV-2 RT-PCR testing. These findings alleviate concerns of increased false negatives in this context. Specimen pooling could be used for this population as the likelihood of false negative results is very low due when using a sensitive, dual-target methodology.


Sign in / Sign up

Export Citation Format

Share Document