The Gods of Indian Country

Author(s):  
Jennifer Graber

During the nineteenth century, Americans sought the cultural transformation and the physical displacement of American Indian nations. Native people resisted these efforts. Though this process is often understood as a clash of rival economic systems or racial ideologies, it was also a profound spiritual struggle. The conflict over Indian Country sparked crises for both Natives and Americans. In the end, the experience of intercultural encounter and conflict over land produced religious transformations on both sides. This book focuses on Kiowa Indians during Americans’ hundred-year effort to acquire, explore, and seize their homeland between 1803 and 1903. Kiowas had known struggle and dislocation before. But the forces bearing down on them in the form of soldiers, missionaries, and government representatives were unrelenting. Under increasing pressure, Kiowas adapted their rituals in the hopes of using sacred power more effectively. They drew on a wide range of sources and shifted significantly as circumstances demanded. With Indian Country under assault, Kiowas exercised creative improvisation to sustain their lands and people. Against Kiowas stood Protestants and Catholics who hoped to remake Indian Country. These activists asserted the primacy of white Christian civilization and the need to transform the lives of Native peoples. They also saw themselves as the Indian’s friend, teacher, and protector. But as Kiowas resisted their plans, these Christian representatives supported policies that broke treaties and appropriated Native lands. They argued that the benefits of Christianity and civilization outweighed the costs. In order to secure Indian Country and control indigenous populations, they sanctified the economic and racial hierarchies of their day.

BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Roza Pavlovna Tiis ◽  
Ludmila Pavlovna Osipova ◽  
Daria Veniaminovna Lichman ◽  
Elena Nikolaevna Voronina ◽  
Maxim Leonidovich Filipenko

Abstract Background N-acetyltransferase 2 plays a crucial role in the metabolism of a wide range of xenobiotics, including many drugs, carcinogens, and other chemicals in the human environment. The article presents for the first time data on the frequency of two important “slow” variants of NAT2 gene (NAT2*5, rs1801280 and NAT2*7, rs1799931), which significantly affect the rate of xenobiotics acetylation, among representatives of indigenous populations of Forest and Tundra Nenets in Northern Siberia. The aim of this study was to identify the frequencies of these variants and compare them with frequencies in other ethnic populations. Results NAT2*5 (T341C) genotyping revealed frequencies of 28,0% and 38,6% for Tundra and Forest Nenets, respectively. The frequencies of NAT2*7 (G857A) variant were 9,8% and 8,2% for Tundra and Forest Nenets, respectively. Polymorphic variants frequencies for Nenets are intermediate between those in populations of Europeans and Asians. These results can probably be explained by the presence of both European and Asian components in Nenets gene pools. Conclusions The results of this study expand the knowledge of NAT2 polymorphism in world populations. These data may also help assess the genetic predisposition of Nenets to multifactorial diseases associated with polymorphism in the NAT2 gene and, in general, contribute to the development of personalized medicine in reference to native people of Siberia.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


Work ◽  
2021 ◽  
pp. 1-9
Author(s):  
Linda Widar ◽  
Erika Wall ◽  
Sven Svensson

BACKGROUND: The complex position of a first line manager is characterized by heavy workload and contradictory demands. Little is known about how first line managers experience demand and control in their work. OBJECTIVES: The aim of this study was to explore experiences of demand and control among first line managers within psychiatric and addiction care. METHOD: In the present study, interviews with ten managers in for-profit psychiatric and addiction care in Sweden were analyzed with a phenomenographic approach. RESULTS: The managers experiences of demand and control implied varied and extensive responsibilities for a wide range of professions; regulation by organizational, economic, and political frameworks; creating balance in their work; and handling the emergence and consequences of acute crisis. These experiences of demand and control involved high and contradictory demands together with coexisting high and low levels of control. Many of their work characteristics could be described in terms of both demand and control. CONSLUSION: The first line managers experiences of demand and control are more complex than implied by the job demand control theory. Our results suggest that the organizational position and branch should be considered when identifying health hazards in the work environment of first line managers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Putri Anis Syahira Mohamad Jamil ◽  
Karmegam Karuppiah ◽  
Irniza Rasdi ◽  
Vivien How ◽  
Shamsul Bahri Mohd Tamrin ◽  
...  

Abstract This paper provides a specific deliberation on occupational hazards confronted daily by Malaysian Traffic Police. Traffic police is a high-risk occupation that involves a wide range of tasks and, indirectly, faced with an equally wide variety of hazards at work namely, physical, biological, psychosocial, chemical, and ergonomic hazards. Thereupon, occupational injuries, diseases, and even death are common in the field. The objective of this paper is to collate and explain the major hazards of working as Malaysian traffic police especially in Point Duty Unit, their health effects, and control measures. There are many ways in which these hazards can be minimised by ensuring that sufficient safety measures are taken such as a wireless outdoor individual exposure indicator system for the traffic police. By having this system, air monitoring among traffic police may potentially be easier and accurate. Other methods of mitigating these unfortunate events are incorporated and addressed in this paper according to the duty and needs of traffic police.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-176
Author(s):  
Abdallah S. Abdelsattar ◽  
Anan Safwat ◽  
Rana Nofal ◽  
Amera Elsayed ◽  
Salsabil Makky ◽  
...  

Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.


Author(s):  
Aditya Das ◽  
Rakesh Murthy

One of the major challenges in commercializable micro-nano systems development is the high cost and turnaround that are incurred through multiple product-optimization iterations and expensive fabrication processes for specific systems. Development of complex and heterogeneous micro-nano systems, that are only possible through assembly and not by conventional surface machining approaches, are further impeded by lack of standard design rules and off-the-shelf robotic manipulation systems. Dedicated hardware and system specific component designs, although possible, are not commercially viable for addressing the wide range of opportunities that exists in the prevailing micro-nano domain. In this paper, we present an alternative and holistic top-down approach for micro-nano manufacturing using modular part designs and flexible assembly systems. We incorporate, seamlessly, multiple novel algorithms related to microrobotics and scaling of physics, obtained both analytically as well as experimentally; in order to predict, track and control the uncertainty propagation in a typical manufacturing process, in micro-nano scale, throughout production steps including design, machining, setup, assembly, testing etc. We demonstrate, through multiple examples, the implementation of the proposed framework in micro-nano scale manufacturing.


Sign in / Sign up

Export Citation Format

Share Document