Tornadoes and Their Parent Convective Storms

Author(s):  
Howard B. Bluestein

In the past four decades much has been discovered about tornado formation and structure from observations, laboratory models, and numerical-simulation experiments. Observations include nearby movies and photographs of tornadoes, fixed-site, airborne, and ground-based mobile Doppler radar remote measurements, and in situ measurements using instrumented probes. Laboratory models are vortex chambers and numerical-simulations are based on the governing fluid dynamical equations. However, questions remain: How and why do tornadoes form? and How does the wind field associated with them vary in space and time? Recent studies of tornadoes based on observations, particularly by radar, are detailed. The major aspects of numerically simulating a tornado and its formation are reviewed, and the dynamics of tornado formation and structure based on both observations and laboratory and numerical-simulation experiments are described. Finally, future avenues of research and suggested instrument development for furthering our knowledge are discussed.

Author(s):  
Howard B. Bluestein

In the past four decades much has been discovered about tornado formation and structure from observations, laboratory models, and numerical-simulation experiments. Observations include nearby movies and photographs of tornadoes, fixed-site, airborne, and ground-based mobile Doppler radar remote measurements, and in situ measurements using instrumented probes. Laboratory models are vortex chambers and numerical-simulations are based on the governing fluid dynamical equations. However, questions remain: How and why do tornadoes form? and How does the wind field associated with them vary in space and time? Recent studies of tornadoes based on observations, particularly by radar, are detailed. The major aspects of numerically simulating a tornado and its formation are reviewed, and the dynamics of tornado formation and structure based on both observations and laboratory and numerical-simulation experiments are described. Finally, future avenues of research and suggested instrument development for furthering our knowledge are discussed.


Author(s):  
Mampi Sarkar ◽  
Paquita Zuidema ◽  
Virendra Ghate

AbstractPrecipitation is a key process within the shallow cloud lifecycle. The Cloud System Evolution in the Trades (CSET) campaign included the first deployment of a 94 GHz Doppler radar and 532 nm lidar. Despite a larger sampling volume, initial mean radar/lidar retrieved rain rates (Schwartz et al. 2019) based on the upward-pointing remote sensor datasets are systematically less than those measured by in-situ precipitation probes in the cumulus regime. Subsequent retrieval improvements produce rainrates that compare better to in-situ values, but still underestimate. Retrieved shallow cumulus drop sizes can remain too small and too few, with an overestimated shape parameter narrowing the raindrop size distribution too much. Three potential causes for the discrepancy are explored: the gamma functional fit to the dropsize distribution, attenuation by rain and cloud water, and an underaccounting of Mie dampening of the reflectivity. A truncated exponential fit may represent the dropsizes below a showering cumulus cloud more realistically, although further work would be needed to fully evaluate the impact of a different dropsize representation upon the retrieval. The rain attenuation is within the measurement uncertainty of the radar. Mie dampening of the reflectivity is shown to be significant, in contrast to previous stratocumulus campaigns with lighter rain rates, and may be difficult to constrain well with the remote measurements. An alternative approach combines an a priori determination of the dropsize distribution width based on the in-situ data with the mean radar Doppler velocity and reflectivity. This can produce realistic retrievals, although a more comprehensive assessment is needed to better characterize the retrieval errors.


Author(s):  
Fred V. Brock ◽  
Scott J. Richardson

Measurements of atmospheric properties become progressively more difficult with altitude above the surface of the earth, and even surface measurements are difficult over the oceans. First balloons, then airplanes and rockets, were used to carry instruments aloft to make in-situ measurements. Now remote sensors, both ground-based and satellite-borne, are used to monitor the atmosphere. In this context, upper air means all of the troposphere above the first hundred meters or so and, in some cases, the stratosphere. There are many uncertainties associated with remote sensing, so there is a demand for in-situ sensors to verify remote measurements. In addition, the balloon- borne instrument package is relatively inexpensive. However, it should be noted that cost is a matter of perspective; a satellite with its instrumentation, ground station, etc. may be cost-effective when the mission is to make measurements all over the world with good space and time resolution, as synoptic meteorology demands. Upper air measurements of pressure, temperature, water vapor, and winds can be made using in-situ instrument packages (carried aloft by balloons, rockets, or airplanes) and by remote sensors. Remote sensors can be classified as active (energy emitters like radar or lidar) or passive (receiving only, like microwave radiometers), and by whether they “look” up from the ground or down from a satellite. Remote sensors are surveyed briefly before discussing in-situ instruments. Profiles of temperature, humidity, density, etc. can be estimated from satellites using multiple narrow-band radiometers. These are passive sensors that measure longwave radiation upwelling from the atmosphere. For example, temperature profiles can be estimated from satellites by measuring infrared radiation emitted by CO2 (bands around 5000 μm) and O2 (bands around 3.4μm and 15μm) in the atmosphere. Winds can be estimated from cloud movements or by using the Doppler frequency shift due to some component of the atmosphere being carried along with the wind. An active sensor (radar) is used to estimate precipitation and, if it is a Doppler radar, determine winds. The great advantage of satellite-borne instruments is that they can cover the whole earth with excellent spatial resolution.


G. Hunt ( PACTEL, London , U. K. ). It is an incredibly important problem to try to understand the Solar System; where we are now, where it has come from. We are looking today at things that happened in the past; the Sun has changed during its lifetime and that upsets some of the chemistry that we are looking at. Professor Gautier’s presentation does raise a number of very important questions of interpretation. The error bars on some of his critical ratios are very large. How can we reduce those error bars? Can this be done as a result of doing remote measurements or must we make in situ observations? Are there more things that we can be doing in the laboratory to improve our spectroscopy, for example? Theories develop more rapidly than observations, that is obviously one of the problems that we are always facing. Something that has been given some attention is the question of the colour of some of the objects we have been looking at. Colour was not mentioned this morning; is it something we should be taking into account. When we make these observations, from Voyager particularly, we are looking right at the very top of the atmosphere, we are looking at the dirt on the skin of the orange type of scenario, yet we are talking about what is happening all the way through. Just how well do we understand those interiors? The weather systems that we think we understand can be explained either by a deep model or a very shallow model. Is that important ? Does it affect the way we interpret these results? These are some of the things that are running through the minds of people as we discuss these factors today, coupled with the fact that when we move away from talking about hydrogen and helium and get involved with other components of the Solar System, things like oxygen, then we really are in difficulties because they have their own chemistry at some depth, and affect the dynamics and the chemistry at these particular levels. Let us just ask ourselves whether are we asking the basic questions, the real questions; have we really set up the ways in which these things can be answered in the next ten years.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


2021 ◽  
Author(s):  
Tomas Rosén ◽  
Ruifu Wang ◽  
HongRui He ◽  
Chengbo Zhan ◽  
Shirish Chodankar ◽  
...  

During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties...


Sign in / Sign up

Export Citation Format

Share Document