Voice Processing in Dementia

Author(s):  
Jennifer L. Agustus ◽  
Julia C. Hailstone ◽  
Jason D. Warren

This chapter summarizes the clinical features, cognitive mechanisms, and neuroanatomical substrates of voice-processing disorders associated with the major dementias. Although disturbances of voice processing are rarely the leading feature of these diseases, impaired perception or recognition of voice identity and non-verbal vocal signals contributes to daily-life disability in the dementias and constitutes a significant source of distress for patients and caregivers. The brain networks targeted in particular diseases provide a substrate for the characteristic clinico-anatomical phenotypes that define different dementias and, more particularly, for the development of voice-processing deficits, as the networks overlap closely those implicated in the processing of voices in the healthy brain. The chapter firstly reviews key clinical and neuroanatomical characteristics of common dementias that affect voice processing, and considers the challenges of assessing voice processing in these diseases. It then outlines a taxonomy of voice-processing symptoms and deficits in the dementias, related to the perception and recognition of voices as complex ‘auditory objects’ that signal speaker identity as well as much other paralinguistic information. The extent to which deficits may be selective for voice attributes versus other domains of non-verbal sound and person knowledge, and the demands of integrating vocal with other sensory information, are considered. The chapter surveys the neuroanatomical correlates of disordered voice processing in neurodegenerative syndromes, and concludes by proposing a framework for understanding voice processing in the dementias and by indicating directions for future work.

1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Author(s):  
Ann-Sophie Barwich

How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities on the basis of previous experiences. Drawing on this development, this chapter analyses perceptions as processes. Looking at olfaction as a model system, it argues for the need to abandon a stimulus-centred perspective, where smells are thought of as stable percepts, computationally linked to external objects such as odorous molecules. Perception here is presented as a measure of changing signal ratios in an environment informed by expectancy effects from top-down processes.


Author(s):  
Lisa Marie Anderson-Umana

The problems related to Sunday school students not making the connection between Scripture and daily life and a superficial teaching of the Bible compelled the author to create a novel approach to teaching Sunday school called the “Good Sower.” The imagery of a “Good Sower” is used to teach volunteers how to teach the Bible. Based on solid research regarding how the brain learns, it serves as an overlay in conjunction with published curriculum.


2015 ◽  
Vol 17 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Evan Hy Einstein

Depression is currently understood within a biomedical paradigm. This paradigm is an example of reductionism; people are clinically diagnosed and categorized based on behavior and affect, while they are then prescribed psychotropic medications based on an inconclusively correlated neurotransmitter imbalance in the brain. In this article, clinical diagnosis and labeling are explored with respect to their detrimental potential. A framework of embodied cognition is used to conceptualize a cognitive model of depressive experience. This theoretical model explores the potentially self-reinforcing cognitive mechanisms behind a depressive experience, with the goal of highlighting the possibility of diagnosis as a detrimental influence on these mechanisms. The aim of this article is to further a discussion about our current mental health care paradigm and provide an explanation as to how it could cause harm to some. Clinical applications of the model are also discussed pertaining to the potential of rendering formal dichotomist diagnoses irrelevant to the ultimate goal of helping people feel better.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
M. Stankovic ◽  
S. Vucetic-Arsic ◽  
S. Alcaz ◽  
J. Cvejic

Aim:We want to present a polymorphic clinical features like: hallutinations, paranoid ideas, agitation and violence as a result of prolonged cocaine intranasal consumption.Methods:We exposed a 30-year old male patient with ICD-X diagnostic criteria for cocaine dependence (intranasal consumption) that treated in the outpatient unit of Special Hospital of Addicitons, Belgrade, Serbia from April to July 2008. We used the medical records, psychical examination, psychiatric interwievs, standard blood sampling and cocaine urine detections sample (positive).Results:Observations a specific and polymorphic clinical features with presence of psychotic symptoms after cocaine consumptions in our male patient, for the first time after 5 years of cocaine dependence: auditory hallucinations (two- voice speakers), paranoid persecution ideas and suspiciousness, agitation with appearance of vegetative symptomatology (palpitations, sweating, pupil dilatation), extremely violence behavior to other people, complete social reductions (“armed to the outside world”, refused any personal contact and isolated from friends and family, permanent outdoor checking). There was an intensive fear too and impaired judgment.Conclusions:Permanent cocaine consumption can result with produce a numerous of psychiatric symptoms and syndromes as our experience does. It is similar to the findings of other studies and papers reviewed. It is suppose that cocaine has numerous effects on important neurotransmitters in the brain, such as increase as well as the release of dopamine and it related with aggressiveness, hallucinations and other psychiatric symptoms.


2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Feigin ◽  
Shira Baror ◽  
Moshe Bar ◽  
Adam Zaidel

AbstractPerceptual decisions are biased by recent perceptual history—a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased ‘prior’ location discriminations, subsequent ‘test’ location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140172 ◽  
Author(s):  
Marcus E. Raichle

Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.


2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


2010 ◽  
Author(s):  
Αικατερίνη Χαραλαμποπούλου

In this study I have attempted to present a linguistic investigation into the nature and structure of time, based on proposals developed in Evans (2004). Accordingly, as linguistic structure and particularly patterns of elaboration reflect conceptual structure conventionalized into a format encodable in language, this study presents an examination of the human conceptual system for time. Indeed, an examination of the ways in which language lexicalizes time provides important insights into the nature and organization of time. That is, given the widely held assumption that semantic structure derives from and reflects, at least partially, conceptual structure, language offers a direct way of investigating the human conceptual system. However, how time is realized at the conceptual level, that is, how we represent time as revealed by the way temporal concepts are encoded in language, does not tell the whole story, if we are to uncover the nature and structure of time. Research in cognitive science suggests that phenomenological experience and the nature of the external world of sensory experience to which subjective experience constitutes a response, give rise to our pre- conceptual experience of time. In other words, as Evans (2004) says, time is not restricted to one particular layer of experience but it rather “constitutes a complex range of phenomena and processes which relate to different levels and kinds of experience” (ibid.: 5). Accordingly, while my focus in this study is on the temporal structure, which is to say the organization and structuring of temporal concepts, at the conceptual level, I have also attempted to present an examination of the nature of temporal experience at the pre-conceptual level (prior to representation in conceptual structure). In this regard, I have examined the results of research from neuroscience, cognitive psychology and social psychology. More specifically and with respect to evidence from neuroscience, it is suggested that temporal experience is ultimately grounded in neurological mechanisms necessary for regulating and facilitating perception (e.g., Pöppel 1994). That is, perceptual processing is underpinned by the occurrence of neurologically instantiated temporal intervals, the perceptual moments, which facilitate the integration of sensory information into coherent percepts. As we have seen, there is no single place in the brain where perceptual input derived from different modalities, or even information from within the same modality, can be integrated. In other words, there is no one place where spatially distributed sensory information associated with the distinct perceptual processing areas of the brain, are integrated in order to produce a coherent percept. Rather, what seems to be the case is that the integration of sensory information into coherent percepts is enabled by the phenomena of periodic perceptual moments. Such a mechanism enables us to perceive, in that the nature of our percepts are in an important sense ‘constructed’. Put another way, perception is a kind of constructive process which updates successive perceptual information to which an organism has access. The updating occurs by virtue of innate timing mechanisms, the perceptual moments, which occur at all levels of neurological processing and range from a fraction of second up to an outer limit of about three seconds. It is these timing mechanisms which form the basis of our temporal experience. As Gell says, “perception is intrinsically time-perception, and conversely, time-perception, or internal time-consciousness, is just perception itself...That is to say, time is not something we encounter as a feature of contingent reality, as if it lay outside us, waiting to be perceived along with tables and chairs and the rest of the perceptible contents of the universe. Instead, subjective time arises as inescapable feature of the perceptual process itself, which enters into the perception of anything whatsoever” (1992: 231). In other words, our experience of time is a consequence of the various innate ‘timing mechanisms' in the brain which give rise to a range of perceptual moments, which are in turn necessary for and underpin perceptual processing. In this way, time exists into the experience of everything as it is fundamental to the way in which perceptual process operates. […]


Sign in / Sign up

Export Citation Format

Share Document