scholarly journals The impact of di-isononyl phthalate exposure on specialized epithelial cells in the colon

Author(s):  
Karen Chiu ◽  
Shah Tauseef Bashir ◽  
Justin Chiu ◽  
Romana A Nowak ◽  
Jodi A Flaws

Abstract Di-isononyl phthalate (DiNP) is a high-molecular-weight phthalate commonly used as a plasticizer for polyvinyl chloride and other end products, such as medical devices and construction materials. Most of our initial exposure to DiNP occurs by ingestion of DiNP-contaminated foods. However, little is known about the effects of DiNP on the colon. Therefore, the goal of this study was to test the hypothesis that DiNP exposure alters immune responses and impacts specialized epithelial cells in the colon. To test this hypothesis, adult female mice were orally dosed with corn-oil vehicle control or doses of DiNP ranging from 20 µg/kg/d to 200 mg/kg/d for 10-14 days. After the dosing period, mice were euthanized in diestrus, and colon tissues and sera were collected for histological, genomic, and proteomic analysis of various immune factors and specialized epithelial cells. Subacute exposure to DiNP significantly increased protein levels of Ki67 and MUC2, expression of a Paneth cell marker (Lyz1), and estradiol levels in sera compared to control. Gene expression of mucins (Muc1, Muc2, Muc3a, and Muc4), Toll-like receptors (Tlr4 and Tlr5), and specialized epithelial cells (ChgA, Lgr5, Cd24a, and Vil1) were not significantly different between treatment groups and control. Cytokine levels of IL-1RA and CXCL12 were also not significantly different between DiNP treatment groups and control. These data reveal that DiNP exposure increases circulating estradiol levels and gene expression in specialized epithelial cells with immune response capabilities (e.g., goblet and Paneth cells) in the mouse colon, which may initiate immune responses to prevent further damage in the colon.

2019 ◽  
Vol 31 (1) ◽  
pp. 157
Author(s):  
D. Bresnahan ◽  
E. Carnevale

Maternal metabolic status could affect fertility and early embryo development due to altered concentrations of metabolic hormones. Equine metabolic syndrome (EMS) is a condition in horses associated with obesity and insulin resistance. Equine metabolic syndrome is accompanied by increased concentrations of insulin and leptin and decreased concentrations of adiponectin, in ovarian follicular fluid (FF) and in systemic circulation (SYST). We sought to determine how altered concentrations of insulin, leptin, and adiponectin (ILA), consistent with those in mares with EMS (EMS) or normal mares (normal), would affect blastocyst formation rates, blastocyst gene expression for metabolism and inner cell mass formation (OCT4, SOX2, COX2, DNMT3a1, HK2, LDH, PDH, and GLUT1), and metabolite uptake from culture media. Because equine oocytes are not available for large-scale study, a bovine model was used in this preliminary study to determine the impact of altered ILA on oocytes and embryos. Bovine ovaries were obtained from an abattoir and embryos produced as previously described using chemically defined media (CDM; Barcelo-Fimbres and Seidel 2007Mol. Reprod. Dev. 74, 1406-1418). Briefly, oocytes were cultured in in vitro maturation medium (IVM), fertilized in FCDM, presumptive zygotes were placed into CDM-1 for ~56h. Cleavage rates were assessed, and embryos were moved to CDM-2 for ~122 additional hours. Treatments consisted of 5 groups: (1) standard oocyte IVM, FCDM and embryo production (EP) system (control), (2) IVM with normal FF ILA and control FCDM and EP, (3) IVM with normal FF ILA and FCDM and EP with normal SYST ILA, (4) IVM with EMS FF ILA and control FCDM and EP, and (5) IVM with EMS FF ILA and FCDM and EP with EMS SYST ILA. Seven days after fertilization, blastocysts were pooled in groups of 5 and placed into 50mL of CDM-2 for 24h. Embryos were removed, and medium was frozen and stored at −80°C to determine metabolite usage via gas chromatography mass spectroscopy. Pooled embryos were washed and placed into RNA lysis solution for relative quantitative PCR. Statistical comparisons were performed using ANOVA with a post-hoc Tukey test. Blastocyst formation rates and gene expression of viability markers were not significantly different among groups. However, aspartate was lower (P=0.02) in spent media from Group 3 (normal FF and SYST ILA) and tended (P=0.09) to be lower in media from Group 5 (EMS FF and SYST ILA) when compared with controls (Group 1). The ILA during early embryo development but not oocyte maturation appeared to be associated with increased uptake of aspartate, a nonessential amino acid, thought to be involved in osmoregulation, cellular signalling, and in mouse embryos, facilitate the metabolism of lactate. In conclusion, the addition of ILA in concentrations observed in normal horses and EMS horses did not affect blastocyst formation rates or markers of embryo viability, although embryo metabolism could have been altered.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 438 ◽  
Author(s):  
Elzbieta Pietrzak ◽  
Jan Mazurkiewicz ◽  
Anna Slawinska

Galactooligosaccharides (GOS) are well-known immunomodulatory prebiotics. We hypothesize that GOS supplemented in feed modulates innate immune responses in the skin-associated lymphoid tissue (SALT) of common carp. The aim of this study was to determine the impact of GOS on mRNA expression of the immune-related genes in skin mucosa. During the feeding trial, the juvenile fish (bodyweight 180 ± 5 g) were fed two types of diet for 50 days: control and supplemented with 2% GOS. At the end of the trial, a subset of fish was euthanized (n = 8). Skin mucosa was collected, and RNA was extracted. Gene expression analysis was performed with RT-qPCR to determine the mRNA abundance of the genes associated with innate immune responses in SALT, i.e., acute-phase protein (CRP), antimicrobial proteins (His2Av and GGGT5L), cytokines (IL1β, IL4, IL8, IL10, and IFNγ), lectin (CLEC4M), lyzosymes (LyzC and LyzG), mucin (M5ACL), peroxidase (MPO), proteases (CTSB and CTSD), and oxidoreductase (TXNL). The geometric mean of 40s s11 and ACTB was used to normalize the data. Relative quantification of the gene expression was calculated with ∆∆Ct. GOS upregulated INFγ (p ≤ 0.05) and LyzG (p ≤ 0.05), and downregulated CRP (p ≤ 0.01). We conclude that GOS modulates innate immune responses in the skin mucosa of common carp.


2021 ◽  
Author(s):  
Sebastião Mauro Bezerra Duarte ◽  
José Tadeu Stefano ◽  
Lucas A. M. Franco ◽  
Roberta C. Martins ◽  
Bruna D. G. C. Moraes ◽  
...  

Abstract Background: The aim of this study was to examine the impact of synbiotic supplementation in obesity and microbiota in ob/ob mice. 20 animals were divided into four groups: Obese Treated (OT), Control (OC), Lean Treated (LT) and Control (LC). All animals received standard diet for 8 weeks. Treated groups received a synbiotic in water while nontreated groups received water. After 8 weeks, all animals were sacrificed and gut tissue mRNA isolation and stool samples by microbiota analysis were collected. Beta-catenin, occludin, cadherin and zonulin were analyzed in gut tissue by RT-qPCR. Results: The synbiotic supplementation reduced body weight gain in OT comparing with OC (p=0.0398), increase of Enterobacteriaceae (p=0.005) and decrease of Cyanobacteria (p=0.047), Clostridiaceae (p=0.026), Turicibacterales (p=0.005) and Coprococcus (p=0.047). A significant reduction of Sutterella bacteria (p=0.009) and Turicibacter (p=0.005) was observed in LT compared to LC. Alpha and beta diversities were differ between all treated groups. Beta-catenin gene expression was significantly decreased in the gut tissue of OT (p≤0.0001) when compared to other groups. No changes were observed in occludin, cadherin and zonulin gene expression in the gut tissue. Conclusion: The synbiotics supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.


2020 ◽  
Vol 21 (4) ◽  
pp. 1303 ◽  
Author(s):  
Stefan Bauersachs ◽  
Pascal Mermillod ◽  
Carmen Almiñana

Oviductal extracellular vesicles (oEVs) are emerging as key players in the gamete/embryo–oviduct interactions that contribute to successful pregnancy. Various positive effects of oEVs on gametes and early embryos have been found in vitro. To determine whether these effects are associated with changes of embryonic gene expression, the transcriptomes of embryos supplemented with bovine fresh (FeEVs) or frozen (FoEVs) oEVs during in vitro culture compared to controls without oEVs were analyzed by low-input RNA sequencing. Analysis of RNA-seq data revealed 221 differentially expressed genes (DEGs) between FoEV treatment and control, 67 DEGs for FeEV and FoEV treatments, and minor differences between FeEV treatment and control (28 DEGs). An integrative analysis of mRNAs and miRNAs contained in oEVs obtained in a previous study with embryonic mRNA alterations pointed to direct effects of oEV cargo on embryos (1) by increasing the concentration of delivered transcripts; (2) by translating delivered mRNAs to proteins that regulate embryonic gene expression; and (3) by oEV-derived miRNAs which downregulate embryonic mRNAs or modify gene expression in other ways. Our study provided the first high-throughput analysis of the embryonic transcriptome regulated by oEVs, increasing our knowledge on the impact of oEVs on the embryo and revealing the oEV RNA components that potentially regulate embryonic development.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5311
Author(s):  
Michael Nemec ◽  
Hans Magnus Bartholomaeus ◽  
Michael H. Bertl ◽  
Christian Behm ◽  
Hassan Ali Shokoohi-Tabrizi ◽  
...  

Invisalign aligners have been widely used to correct malocclusions, but their effect on oral cells is poorly known. Previous research evaluated the impact of aligners’ eluates on various cells, but the cell behavior in direct contact with aligners is not yet studied. In the present study, we seeded oral epithelial cells (cell line Ca9-22) directly on Invisalign SmartTrack material. This material is composed of polyurethane and co-polyester and exhibit better mechanical characteristics compared to the predecessor. Cell morphology and behavior were investigated by scanning electron microscopy and an optical cell moves analyzer. The effect of aligners on cell proliferation/viability was assessed by cell-counting kit (CCK)-8 and 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay and live/dead staining. The expression of inflammatory markers and proteins involved in epithelial barrier function was measured by qPCR. Cells formed cluster-like structures on aligners. The proliferation/viability of cells growing on aligners was significantly lower (p < 0.05) compared to those growing on tissue culture plastic (TCP). Live/dead staining revealed a rare occurrence of dead cells on aligners. The gene expression level of all inflammatory markers in cells grown on aligners’ surfaces was significantly increased (p < 0.05) compared to cells grown on TCP after two days. Gene expression levels of the proteins involved in barrier function significantly increased (p < 0.05) on aligners’ surfaces after two and seven days of culture. Aligners’ material exhibits no cytotoxic effect on oral epithelial cells, but alters their behavior and the expression of proteins involved in the inflammatory response, and barrier function. The clinical relevance of these effects has still to be established.


2020 ◽  
Vol 19 ◽  
pp. 153303382097748
Author(s):  
Shao-wei Zhang ◽  
Nan Zhang ◽  
Na Wang

Background: Esophageal cancer (EC) is a primary malignant tumor originating from the esophageal of the epithelium. Surgical resection is a potential treatment for EC, but this is only appropriate for patients who have locally resectable lesions suitable for surgery. However, most patients with EC are at a late stage when diagnosed. Therefore, there is an urgent need to further explore the pathogenesis of EC to enable early diagnosis and treatment. Methods: Our study downloaded 2 expression spectrum datasets (GSE92396 and GSE100942) in the Gene Expression Omnibus (GEO) database. GEO2 R was used to identify the Differentially expressed genes (DEGs) between the samples of EC and control. Using the DAVID tool to make the Functional enrichment analysis. Constructing A protein–protein interaction (PPI) network. Identifying the Hub genes. The impact of hub gene expression on overall survival and their expression based on immunohistochemistry were analyzed. Associated microRNAs were also predicted. Results: There were 36 common DEGs identified. The analysis of GO and KEGG results shown that the variations were predominantly concentrated in the extracellular matrix (ECM), ECM organization, DNA binding, platelet activation, and ECM-receptor interactions. COL3A1 and POSTN had high expression in EC tissues which was compared with their expression in healthy tissues. Analysis of pathologic stages showed that when COL3A1 and POSTN were highly expressed, the stage of the pathologic of EC patients was relatively high (P < 0.005). Conclusions: COL3A1 and POSTN may play an important role in the advancement and occurrence of EC. These genes could provide some novel ideas and basis for the diagnosis and targeted treatment of EC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1452-1452
Author(s):  
Jean-Yves Metais ◽  
Rotraud Wieser ◽  
Cynthia E. Dunbar

Abstract We have found non-random patterns of retroviral integration in long-term hematopoietic repopulating cells in the rhesus macaque, with frequent integration events of MLV vectors into the MDS1-EVI1 gene complex. These findings, along with reports regarding frequent integration events in the same gene complex in patients with chronic granulomatous disease receiving MLV-transduced hematopoietic cells in a clinical trial and the ability of MLV vectors activating expression of this gene via integration to immortalize primary murine bone marrow cells, suggests these gene products could have important roles in normal and leukemic hematopoiesis. Expression from this gene complex can result in translation of at least three distinct proteins: MDS1, EVI1, and MDS1-EVI1. EVI1 has been the most studied protein of this locus. Its overexpression, as a consequence of chromosomal rearrangement or viral integration, is associated with leukemia. MDS1-EVI1 contains a PR domain that is lacking in EVI1 and is thought to possibly be antagonistic to EVI1, however the location of the integrations in our prior rhesus studies would indicate that overexpression of either gene product could be immortalizing. Both proteins share the same expression profile in normal tissues as well as most reports of myeloid leukemias. To investigate the impact of the three gene products on hematopoietic cells, we cloned murine mds1, evi1, and mds1-evi1 into the pMIEV-GFP retroviral vector and produced ecotropic vector particles. These were used to transduce the murine BaF3 hematopoietic cell line as a model to study the impact of expression of these various gene products. Gene expression analysis using Afflymetrix arrays demonstrated that both EVI1 and MDS1-EVI1 expression produced dramatic changes in gene expression profiles of these cells, compared to MDS1 and control vector. For instance, EVI1 transduced cells overexpressed oncogenes such as small G proteins belonging to the RAS family. There was modulation of genes implied in hematopoiesis, apoptosis, TGF beta signaling, and cell cycle. To assess changes in cell cycling of transduced BaF3 cells we used a flow cytometric assay, which unraveled an arrest in G1 phase only when EVI1 was overexpressed. These changes were concomitant to an increased metabolic activity as measured by an MTT assay. Further studies of these different pathways have to be performed in order to confirm the results obtained by the DNA chips analysis. Primary murine bone marrow cells could be immortalized after transduction by both EVI1 and MDS1-EVI1 vectors, compared to MDS1 and control vectors. Mice have been transplanted with primary bone marrow cells transduced with all vectors, and are being followed for hematopoietic changes or leukemia. In conclusion, both MDS1-EVI1 and EVI1 overexpression appear to result in marked changes in the behavior of primitive hematopoietic cells.


2006 ◽  
Vol 13 (10) ◽  
pp. 1098-1103 ◽  
Author(s):  
S. C. Olsen ◽  
S. J. Fach ◽  
M. V. Palmer ◽  
R. E. Sacco ◽  
W. C. Stoffregen ◽  
...  

ABSTRACT Previous studies have suggested that currently available brucellosis vaccines induce poor or no protection in elk (Cervus elaphus nelsoni). In this study, we characterized the immunologic responses of elk after initial or booster vaccination with Brucella abortus strains RB51 (SRB51) and 19 (S19). Elk were vaccinated with saline or 1010 CFU of SRB51 or S19 (n = seven animals/treatment) and booster vaccinated with a similar dosage of the autologous vaccine at 65 weeks. Compared to nonvaccinates, elk vaccinated with SRB51 or S19 had greater (P < 0.05) antibody responses to SRB51 or S19 after initial vaccination and after booster vaccination. Compared to nonvaccinated elk, greater (P < 0.05) proliferative responses to autologous antigen after initial vaccination occurred at only a few sample times in SRB51 (6, 14, and 22 weeks) and S19 (22 weeks) treatment groups. In general, proliferative responses of vaccinates to nonautologous antigens did not differ (P > 0.05) from the responses of nonvaccinated elk. Gamma interferon production in response to autologous or nonautologous Brucella antigens did not differ (P > 0.05) between controls and vaccinates after booster vaccination. Flow cytometric techniques suggested that proliferation occurred more frequently in immunoglobulin M-positive cells, with differences between vaccination and control treatments in CD4+ and CD8+ subset proliferation detected only at 22 weeks after initial vaccination. After booster vaccination, one technique ([3H]thymidine incorporation) suggested that proliferative responses to SRB51 antigen, but not S19 antigen, were greater (P < 0.05) in vaccinates compared to the responses of nonvaccinates. However, in general, flow cytometric and other techniques failed to detect significant anamnestic responses to autologous or nonautologous Brucella antigens in S19 or SRB51 vaccinates after booster vaccination. Although some cellular immune responses were detected after initial or booster vaccination of elk with SRB51 or S19, our data suggest that responses tend to be transient and much less robust than previously reported in SRB51-vaccinated cattle (Bos taurus) or bison (Bison bison). These data may explain why the vaccination of elk with S19 and SRB51 induces poor protection against brucellosis.


Sign in / Sign up

Export Citation Format

Share Document