Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki × B. papyrifera) under different nitrogen supply levels

2020 ◽  
Vol 40 (5) ◽  
pp. 667-682
Author(s):  
Jianwei Ni ◽  
Shang Su ◽  
Hui Li ◽  
Yonghang Geng ◽  
Houjun Zhou ◽  
...  

Abstract Paper mulberry, a vigorous pioneer species used for ecological reclamation and a high-protein forage plant for economic development, has been widely planted in China. To further develop its potential value, it is necessary to explore the regulatory mechanism of nitrogen metabolism for rational nitrogen utilization. In this study, we investigated the morphology, physiology and transcriptome of a paper mulberry hybrid (Broussonetia kazinoki × B. papyrifera) in response to different nitrogen concentrations. Moderate nitrogen promoted plant growth and biomass accumulation. Photosynthetic characteristics, concentration of nitrogenous compounds and activities of enzymes were stimulated under nitrogen treatment. However, these enhancements were slightly or severely inhibited under excessive nitrogen supply. Nitrite reductase and glutamate synthase were more sensitive than nitrate reductase and glutamine synthetase and more likely to be inhibited under high nitrogen concentrations. Transcriptome analysis of the leaf transcriptome identified 161,961 unigenes. The differentially expressed genes associated with metabolism of nitrogen, alanine, aspartate, glutamate and glycerophospholipid showed high transcript abundances after nitrogen application, whereas those associated with glycerophospholipid, glycerolipid, amino sugar and nucleotide sugar metabolism were down-regulated. Combined with weighted gene coexpression network analysis, we uncovered 16 modules according to similarity in expression patterns. Asparagine synthetase and inorganic pyrophosphatase were considered two hub genes in two modules, which were associated with nitrogen metabolism and phosphorus metabolism, respectively. The expression characteristics of these genes may explain the regulation of morphological, physiological and other related metabolic strategies harmoniously. This multifaceted study provides valuable insights to further understand the mechanism of nitrogen metabolism and to guide utilization of paper mulberry.

2019 ◽  
Vol 20 (4) ◽  
pp. 997 ◽  
Author(s):  
Peng Zhang ◽  
Zhuoran Ding ◽  
Zhengzheng Zhong ◽  
Hanhua Tong

Aluminum (Al) at high concentrations inhibits root growth, damage root systems, and causes significant reductions in rice yields. Indica and Japonica rice have been cultivated in distinctly different ecological environments with different soil acidity levels; thus, they might have different mechanisms of Al-tolerance. In the present study, transcriptomic analysis in the root apex for Al-tolerance in the seedling stage was carried out within Al-tolerant and -sensitive varieties belonging to different subpopulations (i.e., Indica, Japonica, and mixed). We found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties, while the gene expression patterns of the Al-tolerant varieties in the mixed subgroup, which was inclined to Japonica, were similar to the Al-tolerant varieties in Japonica. Moreover, after further GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the transcriptomic data, we found that eight pathways, i.e., “Terpenoid backbone biosynthesis”, “Ribosome”, “Amino sugar and nucleotide sugar metabolism”, “Plant hormone signal transduction”, “TCA cycle”, “Synthesis and degradation of ketone bodies”, and “Butanoate metabolism” were found uniquely for Indica Al-tolerant varieties, while only one pathway (i.e., “Sulfur metabolism”) was found uniquely for Japonica Al-tolerant varieties. For Al-sensitive varieties, one identical pathway was found, both in Indica and Japonica. Three pathways were found uniquely in “Starch and sucrose metabolism”, “Metabolic pathway”, and “Amino sugar and nucleotide sugar metabolism”.


2021 ◽  
Author(s):  
Yanyan Dong ◽  
Manqi Wang ◽  
Fanzhang Wu ◽  
Jinping Yan ◽  
Kunzhi Li ◽  
...  

Abstract Nitrogen (N) is one of the essential macronutrients that plays important roles in plant growth and development. To better understand the response of antioxidant system and N metabolism under N starvation and re-supply condition, physiological and transcriptomic analysis were performed in tomato roots. The malondialdehyde (MDA) and reactive oxygen species (ROS) contents increased significantly in tomato seedlings after N starvation for 24 h. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR), the ratio of ASA/DHA and GSH/GSSG, the NO3- contents, nitrate reductase (NR) activity were decreased after N starvation treatment and increased after N re-supply for 24 h. Compared with the control, 1766 genes were up-regulated and 2244 genes were down-regulated after N starvation in tomato. These differentially expressed genes (DEGs) are mainly enriched in functional items such as cellular process, metabolic process and catalytic activity. The KEGG pathways revealed that the DEGs were mainly involved in phenpropane biosynthesis, amino sugar and nucleotide sugar metabolism, and N metabolism. The expression patterns of tomato SlSOD, SlCAT, SlAPX, SlMDHAR, thioredoxin (SlTrxh), peroxiredoxin (SlPrx) and glutaredoxin (SlGrx) genes, and nitrate transporter SlNRT2.4, SlNR, glutamine synthetase (SlGS2), nitrite reductase (SlNiR) decreased after N starvation and increased after N re-supply, which were validated by qRT-PCR. Our results provide a basis for understanding the response of tomato to N deficiency and re-supply and a theoretical reference for cultivation regulation.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2019 ◽  
Author(s):  
Adelaide Tovar ◽  
Gregory J. Smith ◽  
Joseph M. Thomas ◽  
Jack R. Harkema ◽  
Samir N. P. Kelada

AbstractExposure to ambient ozone (O3) pollution causes airway inflammation, epithelial injury, and decreased lung function. Long-term exposure is associated with increased mortality and exacerbations of respiratory conditions. While the adverse health effects of O3 exposure have been thoroughly described, less is known about the molecular processes that drive these outcomes. The aim of this study was to describe the cellular and molecular alterations observed in murine airways after exposure to either 1 or 2 ppm O3. After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3 for 3 hours, we assessed hallmark responses including airway inflammatory cell counts, epithelial permeability, cytokine secretion, and morphological alterations of the large airways. Further, we performed RNA-seq to profile gene expression in two critical tissues involved in O3 responses: conducting airways (CA) and airway macrophages (AM). We observed a concentration-dependent increase in airway inflammation and injury, and a large number of genes were differentially expressed in both target tissues at both concentrations of O3. Genes that were differentially expressed in CA were generally associated with barrier function, detoxification processes, and cellular proliferation. The differentially expressed genes in AM were associated with innate immune signaling, cytokine production, and extracellular matrix remodeling. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in two important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for refined follow-up studies.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Sanjesh Tiwari ◽  
Anuradha Patel ◽  
Sheo Mohan Prasad

Abstract Current study deals with the assuaging effects of two phytohormones; indole acetic acid (IAA; 290 nM) and kinetin (KN; 10 nM) on growth, phycobiliproteins, status of nitrogen metabolism and biochemical constituents; protein, carbohydrate and exopolysaccharide contents in two diazotrophic cyanobacteria Nostoc muscorum and Anabaena exposed to chromium (CrVI) stress (100 µM and 150 µM). Chromium individually at both the tested doses expressively declined the growth, chlorophyll a to carotenoid ratio and contents of phycobiliproteins; phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE). With distinctive impact on status of nitrogen metabolism chromium significantly reduced the nitrate (NO3—) and nitrite (NO2—) uptake rate and foremost decrease in nitrate and ammonia assimilating enzyme; nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) except glutamate dehydrogenase (GDH). However, beneath alike condition, exogenous application of IAA and KN exhibited noteworthy assuaging effects on growth-regulating parameters in both the paddy field cyanobacteria, which consummately occurred as a result of substantial decrease in Cr uptake and inducing signaling responses and also enhances the growth parameter i.e. nitrogen metabolism as a result of considerable lowering in Cr induced damaging effect on nitrogen metabolism and uptake rate, and the alleviating effect was more pronounced with the lower dose of Cr, efficient in N.muscorum than Anabaena.


2015 ◽  
Vol 12 (21) ◽  
pp. 18103-18150 ◽  
Author(s):  
L. Purkamo ◽  
M. Bomberg ◽  
R. Kietäväinen ◽  
H. Salavirta ◽  
M. Nyyssönen ◽  
...  

Abstract. The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180–2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.


2021 ◽  
Vol 22 (23) ◽  
pp. 13005
Author(s):  
Tuo Zeng ◽  
Jia-Wen Li ◽  
Li Zhou ◽  
Zhi-Zhuo Xu ◽  
Jin-Jin Li ◽  
...  

Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetum cinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost–benefit relationship between plant defense and pollination.


2019 ◽  
Vol 56 (03) ◽  
pp. 577-585
Author(s):  
Wenneng Wu

The fruit surface is an infection court where foodborne pathogens compete with indigenous microbiota for microsites to invade the fruits for nutrients acquisition. However, our current understanding of the structure and functions of fruit microbiome visa-vis postharvest pathogen infection is still nascent. Here, we sequenced the metagenomic DNA to understand the structural and functional attributes of healthy and diseased kiwifruit microbiome. The healthy fruits exhibited higher microbial diversity and distinct microbiome composition compared with diseased fruits. The microbiome of diseased fruit was dominated by fungal pathogens Neofusicoccum parvum and Diplodiaseriata, while the microbiome of healthy fruits were enriched by bacteria from Methylobacteriaceae, Sphingomonadaceae, Nocardioidaceae and fungi in Pleosporaceae. Importantly, the healthy fruit microbiome had a higher relative abundance of genes related to ABC transporter, two-component system, bacterial chemotaxis, bacterial secretion system, but had a lower relative abundance of genes associated with polycyclic aromatic hydrocarbon degradation, amino sugar and nucleotide sugar metabolism, glycine, serine and threonine metabolism compared with diseased fruits. Our results indicate that pathogen infection disrupts the fruit microbiome. The changes in microbiome composition and functions could also increase the possibility of secondary pathogen infection as the reduced microbial diversity may demonstrate less resistance to pathogens infection. Therefore, monitoring the microbiome dynamics and their functions using metagenomic approaches could be useful to build a predictive understanding of accurate postharvest disease diagnosis and management in the future


Sign in / Sign up

Export Citation Format

Share Document