scholarly journals Alterations in sucrose and phenylpropanoid metabolism affected by BABA-primed defense in postharvest grapes and the associated transcriptional mechanism

Author(s):  
Chunhong Li ◽  
Wang Kaituo ◽  
Changyi Lei ◽  
Shifeng Cao ◽  
Yixiao Huang ◽  
...  

Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by 10 mM BABA treatment. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ε-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, Y2H and Co-IP assays revealed that the nuclear-localized VvMYB44 physically interacted with the SA-responsive transcription co-activator NPR1 in vivo for defence expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivate their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries, contributing to avoiding the excessive consumption of soluble sugars during the postharvest storage.

1984 ◽  
Vol 102 (2) ◽  
pp. 443-453 ◽  
Author(s):  
R. H. Phipps ◽  
A. B. McAllan ◽  
R. F. Weller

SummaryIsogenic fertile and sterile forage maize (cv. LG 11) grown in separate fields were harvested at regular intervals during growth between mid-July and early October 1979. Leaf, stem and ear components and whole plant (before and after ensiling) were examined for changes in the concentration of dry matter (D.M.), soluble sugars, starch, hemicellulose, cellulose, neutral detergent fibre (NDF) and acid detergent fibre (ADF). In vitro digestibility values for D.M., organic matter (OM) and OM in the D.M. were also determined in fresh and ensiled whole crops.Prior to ensiling the concentration of non-structural carbohydrates in the two crops was markedly different. Fresh fertile plants contained (as g/kg D.M.) 369 and 101 of starch and soluble sugars respectively. Corresponding values for sterile plants were 54 and 343 respectively. Sucrose was the most abundant soluble sugar present and contributed 64 and 74% of the totals in fertile and sterile plants respectively, prior to ensiling. Increases in plant D.M. during growth were significantly affected by the deposition of starch and are described by the following equation:y = 13·6 + 0·49 (±0·073) x(r = 0·93)where y = whole-crop D.M. concentration and x = starch concentration in D.M. The concentrations of hemicellulose and cellulose of both types of fresh plants were similar but those of ADF and NDF were lower in sterile plants. Xylose was the major constituent neutral sugar in the hemicellulose fraction and formed 68 and 76% of the total hemicellulose in the fertile and sterile plants, respectively. In vitro digestibility values of sterile plants tended to be higher than their fertile counterparts.After ensiling, the concentration of soluble sugar in the sterile and fertile crops decreased from 343 to 8 g/kg D.M. and 101 to 5 g/kg D.M. respectively. The in vitro DOMD values of the sterile and fertile crops decreased by 16 and 11 percentage units respectively; both final values were recorded as 61.In vivo digestibility values determined in 18-month-old wether sheep fed at maintenance, for NDF, ADF, cellulose, hemicellulose, nitrogen, OM, D.M. and OM in D.M. were 60·2, 58·0, 65·8, 64·1, 32·9, 66·6, 65·4 and 63·7 respectively for fertile plant silage. These were all markedly lower than the corresponding values for the sterile plant silage which were 68·3, 70·3, 74·8, 73·3, 60·3, 71·3, 69·6 and 67·7 respectively. Within the hemicellulose fraction the digestibility values for xylose in both sterile and fertile plant silage were considerably lower than the values recorded for either arabinose or galactose. In vitro digestibility values for D.M., OM and OM in the D.M. were similar to in vivo values for fertile plant silage but were lower than in vivo values for sterile plant silage.Dairy herd replacement heifers (aged 3–6 months) had higher D.M. intakes when given fertile plant silage ad libitum than with sterile plant silage. However, the liveweight gains of the heifers on sterile and fertile plant silage differed little.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


2020 ◽  
Author(s):  
Xue Wang ◽  
Fei-Hai Yu ◽  
Yong Jiang ◽  
Mai-He Li

Abstract Aims Carbon and nutrient physiology of trees at their upper limits have been extensively studied, but those of shrubs at their upper limits have received much less attention. The aim of this study is to examine the general patterns of non-structural carbohydrates (NSCs), nitrogen (N) and phosphorous (P) in shrubs at the upper limits, and to assess whether such patterns are similar to those in trees at the upper limits. Methods Across Eurasia, we measured the concentrations of soluble sugars, starch, total NSCs, N and P in leaves, branches and fine roots (< 0.5 cm in diameter) of five shrub species growing at both the upper limits and lower elevations in both summer (peak growing season) and winter (dormancy season). Important Findings Neither elevation nor season had significant effects on tissue N and P concentrations, except for lower P concentrations in fine roots in winter than in summer. Total NSCs and soluble sugars in branches were significantly higher in winter than in summer. There were significant interactive effects between elevation and season for total NSCs, starch, soluble sugars and the ratio of soluble sugar to starch in fine roots, showing lower soluble sugars and starch in fine roots at the upper limits than at the lower elevations in winter but not in summer. These results suggest that the carbon physiology of roots in winter may play an important role in determining the upward distribution of shrubs, like that in the alpine tree-line trees.


2019 ◽  
Vol 116 (11) ◽  
pp. 5102-5107 ◽  
Author(s):  
Percy Griffin ◽  
Julie M. Dimitry ◽  
Patrick W. Sheehan ◽  
Brian V. Lananna ◽  
Chun Guo ◽  
...  

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα−/− mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα−/− mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα−/− microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB–related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα−/− mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα–deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα−/− mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lukasz Markiewicz ◽  
Dariusz Pytel ◽  
Bartosz Mucha ◽  
Katarzyna Szymanek ◽  
Jerzy Szaflik ◽  
...  

The aim of presented work was to analyze the impact of particular polymorphic changes in the promoter regions of the -1607 1G/2GMMP1, -1562 C/TMMP9, -82 A/GMMP12, -511 C/TIL-1β, and 372 T/CTIMP1genes on their expression level in POAG patients. Blood and aqueous humor samples acquired from 50 patients with POAG and 50 control subjects were used for QPCR and protein levels analysis by ELISA.In vivopromoter activity assays were carried on HTM cells using dual luciferase assay. All studied subjects underwent ophthalmic examination, including BCVA, intraocular pressure, slit-lamp examination, gonioscopy, HRT, and OCT scans. Patients with POAG are characterized by an increased mRNA expression ofMMP1,MMP9,MMP12, andIL-1βgenes as compared to the control group (P<0.001). Aqueous humor acquired from patients with POAG displayed increased protein expression of MMP1, MMP9, MMP12, and IL-1βcompared to the control group (P<0.001). Allele -1607 1G ofMMP1gene possesses only 42,91% of the -1607 2G allele transcriptional activity and allele -1562 C ofMMP9gene possesses only 21,86% of the -1562 T allele. Increased expression levels of metalloproteinases can be considered as a risk factor for the development of POAG.


1983 ◽  
Vol 63 (2) ◽  
pp. 415-420 ◽  
Author(s):  
D. G. GREEN

Alfa, a relatively nonhardy alfalfa cultivar continued to accumulate, on a dry weight basis, fructose, α- and β-D-glucose, sucrose and maltose during the latter stages of cold hardening. Rambler, a hardier alfalfa cultivar conversely showed a decrease for these soluble sugars with hardening. Frontier rye, a very hardy winter habit cereal showed decreases in these soluble sugars plus melibiose during the same hardening period. These results support the hypothesis that hardy cereals and alfalfa undergo a decrease in soluble sugars with hardening, while less hardy cereals and alfalfa continue to increase in content of soluble sugars. Manitou wheat appeared not to fit this hypothesis and showed the decreased soluble sugars usually associated with hardy cultivars. Although Manitou is a spring type wheat, one of its parents, Thatcher, does contain gene(s) for the winter habit.Key words: Sugar, cold hardening, wheat, rye, alfalfa


1985 ◽  
Vol 5 (11) ◽  
pp. 3168-3182
Author(s):  
E E Strehler ◽  
M Periasamy ◽  
M A Strehler-Page ◽  
B Nadal-Ginard

DNA fragments located 10 kilobases apart in the genome and containing, respectively, the first myosin light chain 1 (MLC1f) and the first myosin light chain 3 (MLC3f) specific exon of the rat myosin light chain 1 and 3 gene, together with several hundred base pairs of upstream flanking sequences, have been shown in runoff in vitro transcription assays to direct initiation of transcription at the cap sites of MLC1f and MLC3f mRNAs used in vivo. These results establish the presence of two separate, functional promoters within that gene. A comparison of the nucleotide sequence of the rat MLC1f/3f gene with the corresponding sequences from mouse and chicken shows that: the MLC1f promoter regions have been highly conserved up to position -150 from the cap site while the MLC3f promoter regions display a very poor degree of homology and even the absence or poor conservation of typical eucaryotic promoter elements such as TATA and CAT boxes; the exon/intron structure of this gene has been completely conserved in the three species; and corresponding exons, except for the regions encoding most of the 5' and 3' untranslated sequences, show greater than 75% homology while corresponding introns are similar in size but considerably divergent in sequence. The above findings indicate that the overall structure of the MLC1f/3f genes has been maintained between avian and mammalian species and that these genes contain two functional and widely spaced promoters. The fact that the structures of the alkali light chain gene from Drosophila melanogaster and of other related genes of the troponin C supergene family resemble a MLC3f gene without an upstream promoter and first exon strongly suggests that the present-day MLC1f/3f genes of higher vertebrates arose from a primordial alkali light chain gene through the addition of a far-upstream MLC1f-specific promoter and first exon. The two promoters have evolved at different rates, with the MLC1f promoter being more conserved than the MLC3f promoter. This discrepant evolutionary rate might reflect different mechanisms of promoter activation for the transcription of MLC1f and MLC3f RNA.


Sign in / Sign up

Export Citation Format

Share Document