scholarly journals Identification of cis-Active Elements in Ustilago maydis mig2 Promoters Conferring High-Level Activity During Pathogenic Growth in Maize

2005 ◽  
Vol 18 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Jan W. Farfsing ◽  
Kathrin Auffarth ◽  
Christoph W. Basse

The Ustilago maydis mig2 cluster comprises five highly homologous genes that display a pronounced plant-specific expression profile. A 350-bp mig2-5 promoter fragment contained all elements sufficient to confer differential promoter activity. Mutational analysis of this region, fused to the green fluorescent protein reporter gene, allowed dissecting core promoter elements required for high-level promoter activity from elements conferring inducible expression in planta. In particular, the presence of several 5′-CCA-3′ motifs within a short stretch of the mig2-5 promoter was decisive for inducible promoter activity. On this basis, we reconstituted an artificial promoter whose inducible activity specifically relied on multiple CCA motifs. In addition, we identified a novel mig2 homologous gene, mig2-6, that is not part of the mig2 cluster, but displayed the strongest differential expression profile among mig2 genes. The deletion of all six mig2 genes did not compromise the ability to induce tumor formation in infected maize plants. Comparative sequence analysis including the mig2-6 promoter revealed an over-representation of the consensus motif 5′-MNMNWNCCAMM-3′. We discuss putative transcriptional activators involved in mig2 regulation.


2007 ◽  
Vol 189 (14) ◽  
pp. 5108-5118 ◽  
Author(s):  
Shicheng Chen ◽  
Michael Bagdasarian ◽  
Michael G. Kaufman ◽  
Adam K. Bates ◽  
Edward D. Walker

ABSTRACT Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the −33 consensus element, −7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal −33/−7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis σABfr consensus −33/−7 promoter elements but lacked similarity to the E. coli σ70 promoter elements. The length of the spacer separating the −33 and −7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.



2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.



2006 ◽  
Vol 188 (4) ◽  
pp. 1411-1418 ◽  
Author(s):  
Guangnan Chen ◽  
Amrita Kumar ◽  
Travis H. Wyman ◽  
Charles P. Moran

ABSTRACT At the onset of endospore formation in Bacillus subtilis the DNA-binding protein Spo0A directly activates transcription from promoters of about 40 genes. One of these promoters, Pskf, controls expression of an operon encoding a killing factor that acts on sibling cells. AbrB-mediated repression of Pskf provides one level of security ensuring that this promoter is not activated prematurely. However, Spo0A also appears to activate the promoter directly, since Spo0A is required for Pskf activity in a ΔabrB strain. Here we investigate the mechanism of Pskf activation. DNase I footprinting was used to determine the locations at which Spo0A bound to the promoter, and mutations in these sites were found to significantly reduce promoter activity. The sequence near the −10 region of the promoter was found to be similar to those of extended −10 region promoters, which contain a TRTGn motif. Mutational analysis showed that this extended −10 region, as well as other base pairs in the −10 region, is required for Spo0A-dependent activation of the promoter. We found that a substitution of the consensus base pair for the nonconsensus base pair at position −9 of Pskf produced a promoter that was active constitutively in both ΔabrB and Δspo0A ΔabrB strains. Therefore, the base pair at position −9 of Pskf makes its activity dependent on Spo0A binding, and the extended −10 region motif of the promoter contributes to its high level of activity.



2001 ◽  
Vol 115 (6) ◽  
pp. 455-464 ◽  
Author(s):  
Xulun Zhang ◽  
Stephan L. Baader ◽  
Feng Bian ◽  
Wolfgang Müller ◽  
John Oberdick


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1682-1682
Author(s):  
Karen M.K. de Vooght ◽  
Richard van Wijk ◽  
Wouter W. van Solinge

Abstract Protoporphyrinogen oxidase (PPOX), the penultimate enzyme in the heme biosynthetic pathway, catalyzes the six-electron oxidation of protoporphyrinogen IX to protoporphyrin IX. Like other heme biosynthetic proteins, PPOX is involved in synthesizing heme for red cells (erythroid-specific expression) and as a cofactor for the respiratory cytochromes (housekeeping expression). To date, little is known about transcriptional regulation of the human PPOX gene (PPOX). We established the molecular basis for erythroid-specific expression of PPOX. Using transient in vitro transfection assays in human erythroleukemic K562 cells we studied tissue-specific expression of PPOX. We found that reporter constructs lacking exon 1 showed a 75% reduction in promoter strength in K562 cells (Figure, no 1 and 2). Hence, in vitro high-level erythroid-specific expression of PPOX is dependent on the presence of exon 1. Examination of erythroid-specific regulatory elements in exon 1 revealed two GATA-1 sites, one consensus (A/T)GATA(A/G) site (GATA-1_II AGATAA) and one non-consensus site, deviating at the first nucleotide (GATA-1_I, CGATAG). To study the relative contribution of these two GATA-1 sites to erythroid-specific transcriptional regulation, we performed in vitro transfections of wild-type and mutant (GATA → GTTA) reporter plasmids in K562 cells. We found that the highest level of transcription depended on the integrity of both sites (Figure, no 5). The consensus GATA-1_II site contributed the most to promoter strength (Figure, no 4). Subsequent electrophoretic mobility shift assay and supershift experiments using K562 nuclear extracts demonstrated that both GATA sites were able to bind GATA-1 in vitro. Our experiments showed that exon 1 was dispensable for PPOX promoter activity in human hepatoma HepG2 cells. Interestingly, in HeLa human cervical carcinoma cells the presence of exon 1 decreased promoter activity. Conclusively, exon 1 of the human PPOX gene contains two GATA-1 binding sites, which are required for high level erythroid-specific expression of PPOX and, in addition, bind GATA-1 in vitro. Our results contribute to a better understanding of the molecular mechanisms involved in differential regulation of the human PPOX promoter in erythroid and non-erythroid cells. Figure Figure



1997 ◽  
Vol 17 (2) ◽  
pp. 612-619 ◽  
Author(s):  
R C Iannello ◽  
J Young ◽  
S Sumarsono ◽  
M J Tymms ◽  
H H Dahl ◽  
...  

Spermatogenesis is a complex process requiring the coordinate expression of a number of testis-specific genes. One of these, Pdha-2, codes for the murine spermatogenesis-specific isoform of the E1a subunit of the pyruvate dehydrogenase complex. To begin to delineate the mechanisms regulating its expression in vivo, we have generated transgenic mice lines carrying Pdha-2 promoter deletion constructs. Here we report that transgenic mice harboring a construct containing only 187 bp of promoter and upstream sequences (core promoter) is sufficient for directing the testis-specific expression of a chloramphenicol acetyltransferase (CAT) reporter gene. Like the endogenous Pdha-2, the CAT gene is expressed in testis in a stage-specific manner. Our studies also show a correlation between CpG methylation within the core promoter and its capacity to regulate transcription. In NIH 3T3 cell lines stably transfected with the Pdha-2 core promoter-CAT construct, high levels of CAT reporter expression are observed, whereas the endogenous Pdha-2 gene is repressed. In these cells, the CpG dinucleotides residing within the transfected promoter are hypomethylated whereas those residing in the endogenous promoter are methylated. Furthermore, promoter activity can be abated by the in vitro methylation of its CpG dinucleotides. DNase I footprint analysis indicates that at least one site for the methylation-mediated repression may occur through the ATF/cyclic AMP response element binding element located within the core promoter. Mutations within this element reduces activity to approximately 50% of the wild-type promoter activity. These results suggest that tissue-specific gene expression may be modulated by other mechanisms in addition to specific transcription factor availability and cooperativity. We propose that methylation may be a mechanism by which repression of the testis-specific Pdha-2 gene is established in somatic tissue.



1997 ◽  
Vol 11 (12) ◽  
pp. 1814-1821 ◽  
Author(s):  
Dawn L. Duval ◽  
Scott E. Nelson ◽  
Colin M. Clay

Abstract The molecular mechanisms regulating restricted expression of GnRH receptor and gonadotropin subunit genes to gonadotrope cells have been the focus of intense interest. Using deletion and mutational analysis we have identified a tripartite enhancer that regulates cell-specific expression of the GnRH receptor gene in the gonadotrope-derived αT3–1 cell line. Individual elements of this enhancer include binding sites for steroidogenic factor-1; activator protein 1 (AP-1); and a novel element referred to as the GnRH receptor activating sequence (GRAS). Mutation of each element alone results in loss of approximately 60% of promoter activity. Combinatorial mutations of any two elements decreases promoter activity by approximately 80%. Finally, mutation of all three elements reduces promoter activity to a level not different from promoterless vector. Using 2-bp mutations, we have defined the functional requirements for transcriptional activation by GRAS. The core motif of GRAS is at −391 to −380 bp relative to the start site of translation and has the sequence 5′-CTAGTCACAACA-3′. Three copies of GRAS or GRAS with a 2-bp mutation (μGRAS) were cloned into a luciferase expression vector immediately upstream of the thymidine kinase minimal promoter (TK) and tested for expression in αT3–1 cells. When compared with TK promoter alone, activity of 3xGRAS-TKLUC was increased by more than 5-fold while activity of 3xμGRAS-TKLUC was unchanged. When 3xGRAS-TKLUC was transfected into a variety of nongo-nadotrope cell lines, it did not increase activity of the TK promoter. We propose that basal activity of the GnRH receptor gene is regulated by a tripartite enhancer, and the key component of this enhancer is an element, GRAS, that activates transcription in a cell-specific fashion.



1995 ◽  
Vol 15 (7) ◽  
pp. 3870-3881 ◽  
Author(s):  
B M Evers ◽  
X Wang ◽  
Z Zhou ◽  
C M Townsend ◽  
G P McNeil ◽  
...  

Expression of the gene encoding neurotensin/neuromedin N (NT/N) is mostly limited to the brain and specialized enteroendocrine cells (N cells) of the distal small intestine. We have analyzed the NT/N DNA sequences upstream of the RNA start site that direct cell-specific expression using a novel human endocrine cell line, BON, that resembles intestinal N cells in several important aspects, including NT/N precursor protein processing, ratios of different NT/N mRNA forms, and high levels of constitutive expression of the NT/N gene. Transient transfection assays with plasmids with progressive 5' deletions of the rat NT/N promoter identified the proximal 216 bp of 5' flanking sequences as essential for high-level constitutive NT/N expression in BON cells. In addition, a detailed mutational analysis defined multiple regions within the proximal 216 bp that contribute to cell-specific NT/N expression. These elements include a proximal cyclic AMP response element (CRE)/AP-1-like motif (TGACATCA) that binds c-Jun, JunD, CRE-binding (CREB), and ATF proteins, a near-consensus glucocorticoid response element, and a distal consensus AP-1 site that binds c-Fos, Fra-1, and JunD. In addition, elements contained within two 21-bp imperfect direct repeats play an important role in NT/N expression in BON cells and may bind novel factors that act as positive regulators of NT/N expression. DNase I footprinting and gel shift analyses demonstrate that the sites identified by mutational analysis, and at least one additional site, specifically bind BON cell nuclear proteins in vitro. We speculate that a complex pattern of regulation requiring interaction between a proximal CRE/AP-1-like motif and other upstream control elements play an important role in the high-level constitutive expression of NT/N in the human endocrine cell line BON. In addition, the BON cell line provides a unique model to further characterize the factors regulating cell-specific NT/N expression and to better understand the mechanisms responsible for the terminal differentiation of the N-cell lineage in the gut.



2020 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Alex C Ferris ◽  
Virginia Walbot

Ustilago maydis is a smut fungus that infects all aerial maize organs, namely, seedling leaves, tassels, and ears. In all organs, tumors are formed by inducing hypertrophy and hyperplasia in actively dividing cells; however, the vast differences in cell types and developmental stages for different parts of the plant requires that U. maydis have both general and organ-specific strategies for infecting maize. In this review, we summarize how the maize–U. maydis interaction can be studied using mutant U. maydis strains to better understand how individual effectors contribute to this interaction, either through general or specific expression in a cell type, tissue, or organ. We also examine how male sterile maize mutants that do not support tumor formation can be used to explore key features of the maize anthers that are required for successful infection. Finally, we discuss key unanswered questions about the maize–U. maydis interaction and how new technologies can potentially be used to answer them.



Sign in / Sign up

Export Citation Format

Share Document